CIDCA   05380
CENTRO DE INVESTIGACION Y DESARROLLO EN CRIOTECNOLOGIA DE ALIMENTOS
Unidad Ejecutora - UE
artículos
Título:
Review Article Update on vegetable lecithin and phospholipid technologies
Autor/es:
WILLEM VAN NIEWENHUYZEN; MABEL C. TOMÁS
Revista:
EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY
Editorial:
Wiley-Blackwell
Referencias:
Lugar: Weinheim; Año: 2008 vol. 110 p. 472 - 486
ISSN:
1438-7697
Resumen:
This paper reviews the production technologies for sourcing lecithins from the oil-bearing seeds soybean, rapeseed and sunflower kernel. The phospholipid composition is measured by newly developed HPLCLSD and 31P-NMR methods. The phospholipid compositions of the three types of lecithin show small differences, while the fatty acid composition is largely equivalent to the oil source. Regulatory specifications (FAO/WHO, EU, FCC) and DGF and AOCS analytical methods for product quality are compiled. Phospholipid modifications by enzymatic hydrolysis, solvent fractionation, acetylating and hydroxylation processes result in lecithins with specific enhanced hydrophilicity and oil-in-water emulsifying properties. New available phospholipase and lipase enzymes represent opportunities for the esterification of phospholipids with special omega fatty acids and serine groups. Application characteristics are given for use in yellow fat spreads, baked goods, chocolate, agglomerated instant powders, liposome encapsulation, animal feed, food supplements and pharmaceutics. differences, while the fatty acid composition is largely equivalent to the oil source. Regulatory specifications (FAO/WHO, EU, FCC) and DGF and AOCS analytical methods for product quality are compiled. Phospholipid modifications by enzymatic hydrolysis, solvent fractionation, acetylating and hydroxylation processes result in lecithins with specific enhanced hydrophilicity and oil-in-water emulsifying properties. New available phospholipase and lipase enzymes represent opportunities for the esterification of phospholipids with special omega fatty acids and serine groups. Application characteristics are given for use in yellow fat spreads, baked goods, chocolate, agglomerated instant powders, liposome encapsulation, animal feed, food supplements and pharmaceutics. 31P-NMR methods. The phospholipid compositions of the three types of lecithin show small differences, while the fatty acid composition is largely equivalent to the oil source. Regulatory specifications (FAO/WHO, EU, FCC) and DGF and AOCS analytical methods for product quality are compiled. Phospholipid modifications by enzymatic hydrolysis, solvent fractionation, acetylating and hydroxylation processes result in lecithins with specific enhanced hydrophilicity and oil-in-water emulsifying properties. New available phospholipase and lipase enzymes represent opportunities for the esterification of phospholipids with special omega fatty acids and serine groups. Application characteristics are given for use in yellow fat spreads, baked goods, chocolate, agglomerated instant powders, liposome encapsulation, animal feed, food supplements and pharmaceutics.