INVESTIGADORES
FERNANDEZ Ariel
artículos
Título:
The principle of minimal episteric distortion of the water matrix and its role in protein folding
Autor/es:
ARIEL FERNANDEZ
Revista:
JOURNAL OF CHEMICAL PHYSICS
Editorial:
AMER INST PHYSICS
Referencias:
Lugar: New York; Año: 2013 vol. 139 p. 85101 - 85101
ISSN:
0021-9606
Resumen:
A significant episteric (around a solid) distortion of the hydrogen-bond structure of water is promoted by solutes with nanoscale surface detail and physico-chemical complexity, such as soluble natural proteins. These structural distortions defy analysis because the discrete nature of the solvent at the interface is not upheld by the continuous laws of electrostatics. This work derives and validates an electrostatic equation that governs the episteric distortions of the hydrogen-bond matrix. The equation correlates distortions from bulk-like structural patterns with anomalous polarization components that do not align with the electrostatic field of the solute. The result implies that the interfacial energy stored in the orthogonal polarization correlates with the distortion of the water hydrogen-bond network. The result is validated vis-à-vis experimental data on protein interfacial thermodynamics and is interpreted in terms of the interaction energy between the electrostatic field of the solute and the dipole moment induced by the anomalous polarization of interfacial water. Finally, we consider solutes capable of changing their interface through conformational transitions and introduce a principle of minimal episteric distortion (MED) of the water matrix. We assess the importance of the MED principle in the context of protein folding, concluding that the native fold may be identified topologically with the conformation that minimizes the interfacial tension or disruption of the water matrix.