INAUT   24330
INSTITUTO DE AUTOMATICA
Unidad Ejecutora - UE
artículos
Título:
Multisensory Stimulation and EEG RecordingBelow the Hair-Line: A New Paradigmon Brain Computer Interfaces
Autor/es:
DIEZ P.; CARMONA VICTOR; MUT VICENTE; LACIAR E.; DIEZ P.; CARMONA VICTOR; MUT VICENTE; LACIAR E.
Revista:
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING
Editorial:
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Referencias:
Año: 2020 vol. 28 p. 825 - 831
ISSN:
1534-4320
Resumen:
To test the feasibility of implementing multisensory (auditory and visual) stimulation in combination with electrodes placed on non-hair positions to design more efficient and comfortable Brain-computer interfaces (BCI). Fifteen volunteers participated in the experiments. They were stimulated by visual, auditory and multisensory stimuli set at 37, 38, 39 and 40Hz and at different phases (0°, 90°, 180° and 270°). The electroencephalogram (EEG) was measured from Oz, T7, T8, Tp9 and Tp10 positions. To evaluate the amplitude of the visual and auditory evoked potentials, the signal-to-noise ratio (SNR) was used and the accuracy of detection was calculated using canonical correlation analysis. Additionally, the volunteers were asked about the discomfort of each kind of stimulus. The multisensory stimulation allows for attaining higher SNR on every electrode. Non-hair (Tp9 and Tp10) positions attained SNR and accuracy similar to the ones obtained from occipital positions on visual stimulation. No significant difference was found on the discomfort produced by each kind of stimulation. The results demonstrated that multisensory stimulation can help in obtaining high amplitude steady-state evoked responses with a similar discomfort level. Then, it is possible to design a more efficient and comfortable hybrid-BCI based on multisensory stimulation and electrodes on non-hair positions. The current article proposes a new paradigm for hybrid-BCI based on steady-state evoked potentials measured from the area behind-the-ears and elicited by multisensory stimulation, thus, allowing subjects to achieve similar performance to the one achieved by visual-occipital BCI, but measuring the EEG on a more comfortable electrode location.