CIMA   09099
CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Unidad Ejecutora - UE
artículos
Título:
Parana River morphodynamics in the context of climate change
Autor/es:
GUERRERO, MASSIMO; NONES, MICHAEL ; SAURRAL, RAMIRO ; MONTROULL, NATALIA ; SZUPIANY, RICARDO N.
Revista:
International Journal of River Basin Management
Editorial:
Taylor & Francis
Referencias:
Lugar: London; Año: 2013 vol. 11 p. 423 - 437
ISSN:
1571-5124
Resumen:
This paper presents an analysis of the sediment dynamics that takes place at different scales within the Middle and the Lower Parana River in the La Plata Basin. The aim of this study is to provide a multi-disciplinary and multi-scale approach for the prediction of river future morphology in the context of climate change, the intended use of which is the prognosis of river morphodynamics long-term impact on manmade structures and activities over or near the river. The study is based on three levels of mathematical modelling, with the output of wider-scale models providing the input conditions for more specific ones. Climate models give the input ensemble, i.e., future precipitation and temperature over La Plata Basin. The semi-distributed macroscale VIC hydrological model simulates the flow discharge time series that are applied to an own-developed 1-D morphodynamic model. The 1-D model simulates future rate of sediment transport and corresponding bed level changes at watershed scale and provides the boundary conditions for a 2-D model. Therefore, streamflow divagations at channel scale are simulated by means of the MIKE21C code developed by the Danish Hydraulic Institute. The analysis indicates a rather low sensitivity of the Parana River bed profile, i.e., 1-D morphology, to the increase predicted in flow discharge, whereas the streamflow appreciably divagates. In particular, surpassing an upper bound in the most frequent discharge appears effective in driving the actual bifurcated morphology into a meandering-multithread configuration.