INVESTIGADORES
DE PRAT GAY Gonzalo
artículos
Título:
Conformational changes and stabilization induced by ligand binding in the DNA-binding domain of the E2 protein from human papillomavirus
Autor/es:
LIMA, L.M.; PRAT GAY G. DE
Revista:
JOURNAL OF BIOLOGICAL CHEMISTRY
Referencias:
Año: 1997 vol. 272 p. 19295 - 19303
ISSN:
0021-9258
Resumen:
We are investigating the folding of the 81-residue recombinant dimeric DNA binding domain of the E2 protein from human papillomavirus and how it is coupled to the binding of its DNA ligand. Modifications in buffer composition, such as ionic strength and phosphate, cause an approximately 5.0 kcal mol-1 stabilization of the domain to urea unfolding, based on very similar conformational changes as measured by far UV circular dichroism. Binding of DNA produces an even greater stabilization, magnitude similar to that caused by the nonspecific polymer ligand heparin, which shifts the urea midpoint 2.5-fold. The DNA-bound complex displays substantial changes similar to those caused by ionic strength and phosphate in terms of overall secondary structure. Bis-8-anilino-1-naphthalenesulfonate provides a very sensitive conformational probe, which shows alterations in the domain caused by the above mentioned compounds. In general terms, binding of DNA involves an overall conformational readjustment in the protein but maintains the beta-barrel scaffold intact. This conformational plasticity seems to be of importance in the regulatory functions of this type of DNA-binding protein. The extremely long half-life of the E2-DNA complex, together with its very high stability, suggests that, in the absence of other factors that may affect its stability in vivo, the possibility of dissociation once formed is restricted.