INVESTIGADORES
PIROLA Carlos Jose
artículos
Título:
Epigenetic Regulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease: Impact of LiverMethylation of the Peroxisome Proliferator–Activated Receptor ã Coactivator 1 á Promoter
Autor/es:
SILVIA SOOKOIAN; MARIA SOLEDAD ROSSELLI; CAROLINA GEMMA; ADRIANA L. BURGUEÑO; TOMAS FERNÁNDEZ GIANOTTI; GUSTAVO O. CASTAÑO; CARLOS J. PIROLA
Revista:
HEPATOLOGY (BALTIMORE, MD.)
Editorial:
JOHN WILEY & SONS INC
Referencias:
Año: 2010 vol. 52 p. 1992 - 2000
ISSN:
0270-9139
Resumen:
Insulin resistance (IR) and mitochondrial dysfunction play a central role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). We hypothesized that genetic factors and epigenetic modifications occurring in the liver contribute to the IR phenotype. We specifically examined whether fatty liver and IR are modified by hepatic DNA methylation of the peroxisome proliferator–activated receptor c coactivator 1a (PPARGC1A) and mitochondrial transcription factor A (TFAM) promoters, and also evaluated whether liver mitochondrial DNA (mtDNA) content is associated with NAFLD and IR. We studied liver biopsies obtained from NAFLD patients in a case–control design. After bisulfite treatment of DNA, we used methylation-specific polymerase chain reaction (PCR) to assess the putative methylation of three CpG in the PPARGC1A and TFAM promoters. Liver mtDNA quantification using nuclear DNA (nDNA) as a reference was evaluated by way of realtime PCR. Liver PPARGC1A methylated DNA/unmethylated DNA ratio correlated with plasma fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR); TFAM methylated DNA/unmethylated DNA ratio was inversely correlated with insulin levels. PPARGC1A promoter methylation was inversely correlated with the abundance of liver PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.c coactivator 1a (PPARGC1A) and mitochondrial transcription factor A (TFAM) promoters, and also evaluated whether liver mitochondrial DNA (mtDNA) content is associated with NAFLD and IR. We studied liver biopsies obtained from NAFLD patients in a case–control design. After bisulfite treatment of DNA, we used methylation-specific polymerase chain reaction (PCR) to assess the putative methylation of three CpG in the PPARGC1A and TFAM promoters. Liver mtDNA quantification using nuclear DNA (nDNA) as a reference was evaluated by way of realtime PCR. Liver PPARGC1A methylated DNA/unmethylated DNA ratio correlated with plasma fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR); TFAM methylated DNA/unmethylated DNA ratio was inversely correlated with insulin levels. PPARGC1A promoter methylation was inversely correlated with the abundance of liver PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.TFAM) promoters, and also evaluated whether liver mitochondrial DNA (mtDNA) content is associated with NAFLD and IR. We studied liver biopsies obtained from NAFLD patients in a case–control design. After bisulfite treatment of DNA, we used methylation-specific polymerase chain reaction (PCR) to assess the putative methylation of three CpG in the PPARGC1A and TFAM promoters. Liver mtDNA quantification using nuclear DNA (nDNA) as a reference was evaluated by way of realtime PCR. Liver PPARGC1A methylated DNA/unmethylated DNA ratio correlated with plasma fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR); TFAM methylated DNA/unmethylated DNA ratio was inversely correlated with insulin levels. PPARGC1A promoter methylation was inversely correlated with the abundance of liver PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.PPARGC1A and TFAM promoters. Liver mtDNA quantification using nuclear DNA (nDNA) as a reference was evaluated by way of realtime PCR. Liver PPARGC1A methylated DNA/unmethylated DNA ratio correlated with plasma fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR); TFAM methylated DNA/unmethylated DNA ratio was inversely correlated with insulin levels. PPARGC1A promoter methylation was inversely correlated with the abundance of liver PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.PPARGC1A methylated DNA/unmethylated DNA ratio correlated with plasma fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR); TFAM methylated DNA/unmethylated DNA ratio was inversely correlated with insulin levels. PPARGC1A promoter methylation was inversely correlated with the abundance of liver PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.TFAM methylated DNA/unmethylated DNA ratio was inversely correlated with insulin levels. PPARGC1A promoter methylation was inversely correlated with the abundance of liver PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.PPARGC1A promoter methylation was inversely correlated with the abundance of liver PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.