INVESTIGADORES
VILLEGAS liliana Beatriz
artículos
Título:
Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina
Autor/es:
VILLEGAS L B; FERNÁNDEZ P M; AMOROSO M J,; FIGUEROA LIC
Revista:
BIOMETALS
Editorial:
SPRINGER
Referencias:
Año: 2008 p. 251 - 600
ISSN:
0966-0844
Resumen:
Twenty-one yeast-like microorganisms were isolated from tannery effluents and from a nickel–copper mine in Argentina. They were tested for their Cu(II), Ni(II), Cd(II) and Cr(VI) tolerance in qualitative assays on solid medium. Three isolates were selected for their multiple tolerance to the different heavy metals and highest tolerance to Cr(VI). According to morphological and physiological analysis and 26S rDNA D1/D2 domain sequences the isolates were characterized as: Lecythophora sp. NGV-1, Candida sp. NGV-9 and Aureobasidium pullulans VR-8. Resistance of the three strains to high Cr(VI) concentrations and their ability to remove Cr(VI) were assessed using YNB-glucose medium supplemented with 0.5 and 1 mM Cr(VI). Chromate removal activity was estimated by measuring remaining Cr(VI) concentration in the supernatant using the colorimetric 1,5-diphenylcarbazide method and total chromium was determined by flame atomic absorption spectroscopy. The results indicate that the initial Cr(VI) concentration negatively influenced growth and the specific growth rate but stimulated the metabolic activity of the three strains; resistance to Cr(VI) by these strains was mainly due to reduction of Cr(VI) rather than chromium bioaccumulation. This study showed the potential ability of these strains as tools for bioremediation of Cr(VI) from contaminated sites.Lecythophora sp. NGV-1, Candida sp. NGV-9 and Aureobasidium pullulans VR-8. Resistance of the three strains to high Cr(VI) concentrations and their ability to remove Cr(VI) were assessed using YNB-glucose medium supplemented with 0.5 and 1 mM Cr(VI). Chromate removal activity was estimated by measuring remaining Cr(VI) concentration in the supernatant using the colorimetric 1,5-diphenylcarbazide method and total chromium was determined by flame atomic absorption spectroscopy. The results indicate that the initial Cr(VI) concentration negatively influenced growth and the specific growth rate but stimulated the metabolic activity of the three strains; resistance to Cr(VI) by these strains was mainly due to reduction of Cr(VI) rather than chromium bioaccumulation. This study showed the potential ability of these strains as tools for bioremediation of Cr(VI) from contaminated sites.