INVESTIGADORES
TAGLIAZUCCHI Mario Eugenio
artículos
Título:
Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers
Autor/es:
RIKKERT NAP; MARIO TAGLIAZUCCHI; IGAL SZLEIFER
Revista:
JOURNAL OF CHEMICAL PHYSICS
Editorial:
AMER INST PHYSICS
Referencias:
Lugar: New York; Año: 2014 vol. 140 p. 249101 - 29491014
ISSN:
0021-9606
Resumen:
This work addresses the effect of the Born self-energy contribution in the modeling of the structuraland thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces.The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local vary-ing property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magni-tude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by  shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads to systematic, but in general small, corrections to earlier theoretical predictions describing the behavior of weak polyelectrolyte layers. However, polyelectrolyte uncharging results in a decrease in the con-centration of counterions and inclusion of the Born Energy can result in a substantial decrease of the counterion concentration. The effect of considering the Born energy contribution is explored for end-grafted weak polyelectrolyte layers by calculating experimental observables which are knownto depend on the presence of charges within the polyelectrolyte layer: inclusion of the Born en-ergy contribution leads to a decrease in the capacitance of polyelectrolyte-modified electrodes, adecrease of conductivity of polyelectrolyte-modified nanopores and an increase in the repulsion ex-erted by a planar polyelectrolyte layer confined by an opposing wall.