INVESTIGADORES
CALVO Ernesto Julio
artículos
Título:
Electrochemical behavior of polyphenol oxidase immobilized in self-assembled structures layer by layer with cationic polyallylamine
Autor/es:
FORZANI, E. S; SOLIS, V. M; ERNESTO JULIO CALVO
Revista:
Analytical Chemistry (Washington)
Referencias:
Año: 2000 vol. 72 p. 5300 - 5307
Resumen:
We report here a novel bioelectrode based on selfassembled multilayers of polyphenol oxidase intercalated with cationic polyallylamine built up on a thiol-modified gold surface. We use an immobilization strategy previously described by Hodak J. et al. (Langmuir 1997, 13, 2708-2716) Quartz crystal microbalance with electroacustic impedance experiments were carried out to follow quantitatively the multilayer film formation. The response of the self-assembly polyphenol oxidase-polyallylamine electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. impedance experiments were carried out to follow quantitatively the multilayer film formation. The response of the self-assembly polyphenol oxidase-polyallylamine electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. 2708-2716) Quartz crystal microbalance with electroacustic impedance experiments were carried out to follow quantitatively the multilayer film formation. The response of the self-assembly polyphenol oxidase-polyallylamine electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. impedance experiments were carried out to follow quantitatively the multilayer film formation. The response of the self-assembly polyphenol oxidase-polyallylamine electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. Langmuir 1997, 13, 2708-2716) Quartz crystal microbalance with electroacustic impedance experiments were carried out to follow quantitatively the multilayer film formation. The response of the self-assembly polyphenol oxidase-polyallylamine electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. impedance experiments were carried out to follow quantitatively the multilayer film formation. The response of the self-assembly polyphenol oxidase-polyallylamine electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. -2716) Quartz crystal microbalance with electroacustic impedance experiments were carried out to follow quantitatively the multilayer film formation. The response of the self-assembly polyphenol oxidase-polyallylamine electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. -polyallylamine electrodes toward different metabolically related catecholamines was studied, to evaluate enzyme kinetics. For the analyzed compounds, only dopamine and its metabolite Dopac gave catalytic currents at applied potential close to 0 V. These responses were proportional to the number of polyphenol oxidase-immobilized layers and were also controlled by the enzymatic reaction. The combination of microgravimetric and electrochemical techniques allowed us to determine the kinetic enzymatic constants, showing that the decomposition rate for the enzyme-substrate complex is slower than the enzymatic reoxidation step. complex is slower than the enzymatic reoxidation step. -substrate complex is slower than the enzymatic reoxidation step.