INVESTIGADORES
NOSETTO Marcelo Daniel
congresos y reuniones científicas
Título:
The conversion of grasslands to forests in Southern South America: Shifting evapotranspiration, stream flow and groundwater dynamics
Autor/es:
JOBBÁGY, E G; NOSETTO, M D; PIÑEIRO, G; FARLEY, K; PALMER, S; JACKSON, R
Lugar:
San Francisco, USA
Reunión:
Congreso; American Geophysical Union. Fall meeting; 2005
Institución organizadora:
AGU
Resumen:
Vegetation changes, particularly those involving transitions between tree- and grass-dominated systems, often modify evaporation as a result of plant-mediated shifts in moisture access and demand. The establishment of tree plantations (fast growing eucalypts and pines) on native grasslands is emerging as a major land-use change, particularly in the Southern Hemisphere, where cheap land and labor, public subsidies, and prospective C sequestration rewards provide converging incentives. What are the hydrological consequences of grassland afforestation? How are crucial ecosystem services such as fresh water supply and hydrological regulation being affected? We explore these questions focusing on a) evapotranspiration, b) stream flow, and c) groundwater recharge-discharge patterns across a network of paired stands and small watershed occupied by native grassland and tree plantation in Argentina and Uruguay. Radiometric information obtained from Landsat satellite images was used to estimate daily evapotranspiration in >100 tree plantations and grasslands stands in the humid plains of the Uruguay River (mean annual precipitation, MAP= 1350 mm). In spite of their lower albedo, tree plantations were 0.5 C° cooler than grasslands. Energy balance calculations suggested 80% higher evapotranspiration in afforested plots with relative differences becoming larger during dry periods. Seasonal stream flow measurements in twelve paired watershed (50-500 Ha) in the hills of Comechingones (MAP= 800 mm) and Minas (MAP= 1200 mm) showed declining water yields following afforestation. Preliminary data in Cordoba showed four-fold reductions of base flow in the dry season and two-fold reductions of peak flow after storms. A network of twenty paired grassland-plantation stands covering a broad range of sediment textures in the Pampas (MAP= 1000 mm, typical groundwater depth= 1-5 m) showed increased groundwater salinity in afforested stands (plantation:grassland salinity ratio = 1.2, 10, and 1.7 in coarse, fine, and intermediate texture sediments, respectively). Local groundwater depression of 0.1 to 1.7 m under tree plantation was widespread. Afforested stands showed diurnal water level fluctuations (0.015 to 0.08 m, night peak) on intermediate to coarse sediments but not in fine textured ones. Groundwater level and salinity shifts suggest reduced recharge in all afforested stands. Phreatophytic discharge was evident only in coarse and intermediate textured sediments. The impact of grassland afforestation on evapotranspiration, stream flow, and ground water highlights the important role of vegetation as a hydrological driver and suggests critical trade-offs between timber production or C sequestration and freshwater supply. Afforestation, however, can also play a positive role regulating floods, perhaps helping to counteract the hydrological impacts of agriculture, which tend to increase water yield.