IBYME   02675
INSTITUTO DE BIOLOGIA Y MEDICINA EXPERIMENTAL
Unidad Ejecutora - UE
artículos
Título:
Epigenetic modifications in the GH-dependent Prlr, Hnf6,Cyp7b1, Adh1 and Cyp 2a4 genes
Autor/es:
BELEN BRIE; ISABEL LACAU- MENGIDO; RAMIREZ, MARIA CECILIA; ANA MARIA ORNSTEIN; BECU- VILLALOBOS, DAMASIA
Revista:
JOURNAL OF MOLECULAR ENDOCRINOLOGY
Editorial:
BIOSCIENTIFICA LTD
Referencias:
Lugar: Bristol; Año: 2020 vol. 64 p. 165 - 179
ISSN:
0952-5041
Resumen:
Many sex differences in liver gene expression originate in the brain, depend on GH secretion and may underlie sex disparities in hepatic disease. Because epigenetic mechanisms may contribute, we studied promoter methylation and microRNA abundance in the liver, associated with expression of sexual dimorphic genes in mice with selective disruption of the dopamine D2 receptor in neurons (neuroDrd2KO), which decreases hypothalamic Ghrh, pituitary GH, and serum IGFI and in neonatally androgenized female mice which have increased pituitary GH content and serum IGFI. We evaluated mRNA levels of the female predominant genes prolactin receptor (Prlr), alcohol dehydrogenase 1 (Adh1), Cyp2a4, and hepatocyte nuclear transcription factor 6 (Hnf6) and the male predominant gene, Cyp7b1. Female predominant genes had higher mRNA levels compared to males, but lower methylation was only detected in the Prlr and Cyp2a4 female promoters. In neuroDrd2KO mice, sexual dimorphism was lost for all genes; the upregulation (feminization) of Prlr and Cyp2a4 in males correlated with decreased methylation of their promoters, and the downregulation (masculinization) of Hnf-6 mRNA in females correlated inversely with its promoter methylation. Neonatal androgenization of females evoked a loss of sexual dimorphism only for the female predominant Hnf6 and Adh1 genes, but no differences in promoter methylation were found. Finally, mmu-miR-155-5p, predicted to target Cyp7b1 expression, was lower in males in association with higher Cyp7b1 mRNA levels compared to females and was not modified in neuroDrd2KO or TP mice. Our results suggest specific regulation of gene sexually dimorphic expression in the liver by methylation or miRNAs.