INVESTIGADORES
ZARATE Sandra Cristina
artículos
Título:
ESTROGENS EXERT A RAPID APOPTOTIC ACTION IN ANTERIOR PITUITARY CELLS
Autor/es:
ZÁRATE SANDRA; JAITA GABRIELA; ZALDIVAR VERÓNICA; RADL DANIELA; EIJO GUADALUPE; FERRARIS JIMENA; PISERA DANIEL; SEILICOVICH ADRIANA
Revista:
American Journal of Physiology - Endocrinology and Metabolism
Editorial:
American Physiological Society
Referencias:
Año: 2009 p. 664 - 671
Resumen:
It is now accepted that estrogens not only stimulate lactotrope proliferation but also sensitize anterior pituitary cells to proapoptotic stimuli. In addition to their classical mechanism of action through binding to intracellular estrogen receptors (ERs), there is increasing evidence that estrogens exert rapid actions mediated by cell membrane-localized ERs (mERs). In the present study, we examined the involvement of membrane-initiated steroid signalling in the proapoptotic action of estradiol in primary cultures of anterior pituitary cells from ovariectomized rats by using estren, a synthetic estrogen with no effect on classical transcription as well as a cell-impermeable 17beta-estradiol conjugate (E2-BSA). Both compounds induced cell death of anterior pituitary cells after 60 minutes of incubation as assessed by flow cytometry and the MTS assay. Estren, E2 and E2-BSA induced apoptosis of lactotropes and somatotropes as evaluated by the TUNEL assay and immunodetection of prolactin (PRL) and growth hormone (GH). The proapoptotic effect of E2-BSA was abrogated by ICI 182,780, an antagonist of ERs. The expression of membrane-associated ERalpha (mERalpha) was observed in PRL and GH-bearing cells. Our results indicate that estradiol is able to exert a rapid apoptotic action in anterior pituitary cells, especially lactotropes and somatotropes, by a mechanism triggered by mERs. This mechanism could be involved in anterior pituitary cell turnover.17beta-estradiol conjugate (E2-BSA). Both compounds induced cell death of anterior pituitary cells after 60 minutes of incubation as assessed by flow cytometry and the MTS assay. Estren, E2 and E2-BSA induced apoptosis of lactotropes and somatotropes as evaluated by the TUNEL assay and immunodetection of prolactin (PRL) and growth hormone (GH). The proapoptotic effect of E2-BSA was abrogated by ICI 182,780, an antagonist of ERs. The expression of membrane-associated ERalpha (mERalpha) was observed in PRL and GH-bearing cells. Our results indicate that estradiol is able to exert a rapid apoptotic action in anterior pituitary cells, especially lactotropes and somatotropes, by a mechanism triggered by mERs. This mechanism could be involved in anterior pituitary cell turnover.