INVESTIGADORES
COSO Omar Adrian
artículos
Título:
A guanine nucleotide-binding protein mediates 1,25-dihydroxy-vitamin D-3-dependent rapid stimulation of Ca2+ uptake in skeletal muscle.
Autor/es:
DE BOLAND AR; FLAWIA MM; COSO O; BOLAND R
Revista:
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Año: 1991 p. 238 - 242
ISSN:
0304-419X
Resumen:
1,25-Dihydroxyvitamin D-3 (1,25(OH)2D3) has been shown to increase Ca2+ uptake readily in skeletal muscle through a dihydropyridine-sensitive pathway, cAMP levels and adenylate cyclase activity. In the present study, fluoride (F-), a potent guanine nucleotide binding protein (G protein) stimulator, rapidly increases vitamin D-deficient skeletal muscle Ca2+ uptake in a dose-dependent manner and with a similar time-course as 1,25(OH)2D3. The increment is detected within 1 min (15%) and steadily increases up to 15 min (60%). The effects of 1,25(OH)2D3 and F- are also observed in muscle from normal, vitamin D-replete chicks. AlCl3, which is required for G protein stimulation by F-, potentiates the effects of F-, Ca2+ uptake in 1,25(OH)2D3-dependent muscle is potentiated by F- and, analogous to the hormone, the effects of F- can be suppressed by Ca(2+)-channel antagonists. Direct exposure of microsomal membranes to 1,25(OH)2D3 reduces the specific binding of [gamma-35S]GTP to the membranes 40%. Pretreatment of muscle with Bordetella pertussis toxin (PTX), known to inhibit Gi, or with cholera toxin (CTX), known to stimulate Gs, produces an acute elevation of muscle Ca2+ uptake. 1,25(OH)2D3 potentiates CTX, but has no additional effect on PTX-dependent Ca2+ uptake. These results indicate that an interaction with an inhibitory G protein coupled to adenylate cyclase may be part of the mechanism by which 1,25(OH)2D3 increase Ca2+ uptake through regulation of Ca(2+)-channel gating by a cAMP-dependent pathway in skeletal muscle.