INVESTIGADORES
CALVO Daniel Juan
artículos
Título:
Flavonoid modulation of ionic currents mediated by GABAA and GABAC receptors.
Autor/es:
GOUTMAN, JD; WAXEMBERG, MD; DOÑATE OLIVER, F; POMATA, PE; CALVO DJ
Revista:
EUROPEAN JOURNAL OF PHARMACOLOGY
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2003 vol. 461 p. 79 - 83
ISSN:
0014-2999
Resumen:
The modulation of ionotropic gamma-aminobutyric acid (GABA) receptors (GABA-gated Cl(-) channels) by a group of natural and synthetic flavonoids was studied in electrophysiological experiments. Quercetin, apigenin, morine, chrysin and flavone inhibited ionic currents mediated by alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors expressed in Xenopus laevis oocytes in the micromolar range. alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors differ largely in their sensitivity to benzodiazepines, but they were similarly modulated by different flavonoids. Quercetin produced comparable actions on currents mediated by alpha(4)beta(2) neuronal nicotinic acetylcholine, serotonin 5-HT(3A) and glutamate AMPA/kainate receptors. Sedative and anxiolytic flavonoids, like chrysin or apigenin, failed to potentiate but antagonized alpha(1)beta(1)gamma(2s) GABA(A) receptors. Effects of apigenin and quercetin on alpha(1)beta(1)gamma(2s) GABA(A) receptors were insensitive to the benzodiazepine antagonist flumazenil. Results indicate that mechanism/s underlying the modulation of ionotropic GABA receptors by some flavonoids differs from that described for classic benzodiazepine modulation.