INVESTIGADORES
HERNANDEZ MORESINO Rodrigo Daniel
artículos
Título:
Phytoplankton dynamics based on satellite inherent optical properties and oceanographic conditions in a patagonian gulf frontal system in relation to the adjacent continental shelf waters
Autor/es:
HERNÁNDEZ MORESINO, RODRIGO DANIEL; GABRIELA N. WILLIAMS; MARTELLI ANTONELA; ELENA S. BARBIERI
Revista:
MARINE ENVIRONMENTAL RESEARCH
Editorial:
ELSEVIER SCI LTD
Referencias:
Lugar: Amsterdam; Año: 2022
ISSN:
0141-1136
Resumen:
The dynamics of phytoplankton across a seasonal frontal system formed in San José Gulf (SJG, Patagonia Argentina) and in neighbouring shelf waters was assessed based on bio-optical satellite data (2003-2018) and spring and summer in situ samplings. Bio-optical properties of the water masses on the eastern (ED) and western (WD) domains of the seasonal frontal system of SJG showed clear differences: the year-round-vertically-mixed waters from the WD, strongly connected with the adjacent shelf waters, evidenced a brief and strong single phytoplankton bloom, while those from the ED, showing lower exchange with shelf waters and a strong vertical stratification during the warm season, displayed an earlier and long-lasting spring phytoplankton bloom, followed by a late-summer and autumn bloom, both associated with the development and erosion of the seasonal thermocline. Waters from the entire system are optically influenced by the absorption of coloured dissolved organic matter and detritus (cdom + detritus), suggests a strong sediment load contribution from the continent and the seabed. To remark, a strong correlation between satellite chlorophyll-a (Chla-sat) and absorption by phytoplankton (aphy443) in the outer shelf waters differs from the weak correlation of those variables in the gulf?s water masses, whose optical parameters are more complex. In situ Chla records may indicate wind-driven upwelling and downwelling areas in the northern and southern coasts of the ED. Dissolved nitrogen was identified as the limiting macronutrient for phytoplankton growth in the ED during summer. This work contributes relevant ecological information that may support management actions on the SJG shellfish artisanal fishery.