INVESTIGADORES
ROMEO Hernan Esteban
artículos
Título:
Synthesis of tetracalcium phosphate from mechanochemically activated reactants and assessment as a component of bone cements.
Autor/es:
HERNÁN E. ROMEO; MARÍA A. FANOVICH
Revista:
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
Editorial:
Springer
Referencias:
Año: 2008 vol. 19 p. 2751 - 2760
ISSN:
0957-4530
Resumen:
The aim of this work was to gain a better understanding about the synthesis of tetracalcium phosphate (TTCP, Ca4(PO4)2O) through a solid-state reaction from mechanochemically activated CaCO3-(NH4)2HPO4 mixtures. The evolution of the reaction was followed by DTA, XRD, FTIR and SEM techniques. An enhanced reactivity of the mixtures was detected as the mechanochemical treatment times increased. This effect was related to both the loss of crystallinity of the reactants and the production of defects on their surfaces. 6 h of mechanochemical processing at 1190 rpm, followed by 3 h of thermal treatment at 1500º C, were enough to obtain pure TTCP. The crystallinity and purity of the obtained TTCP were checked by XRD and FTIR. The morphologic characteristics were analyzed by SEM and BET analysis. The behavior of synthesized TTCP powder in combination with commercial dicalcium phosphate anhydrous (DCPA, CaHPO4), as the solid phase of bone cements, was tested. Both the combination of different particle sizes of TTCP and DCPA and the effect of different kinds of accelerator agents (disodium hydrogen phosphate, tartaric acid, citric acid and oxalic acid) on setting time and degree of conversion to hydroxyapatite (HA, Ca10(PO4)6(OH)2) were evaluated. The combination of TTCP (0.32 m2/g) with DCPA (1.52 m2/g), in a 1/1 molar ratio, showed the shortest setting times and high conversions to HA when an oxalic acid solution (5% volume fraction) was used as the liquid phase of the formulation. Results obtained from this work demonstrated that synthesized TTCP shows promising behavior as a component of bone cements, exhibiting not only a smaller particle size than that usually reported but also a low degree of crystallinity, all of which increases the reactivity of the obtained TTCP. This study provided a very efficient method for synthesizing pure TTCP through a modified solid-state reaction from mechanochemically activated reactants, employing very short times of thermal treatment in comparison with the conventional processes.