INVESTIGADORES
ALONSO Roberto Emilio
artículos
Título:
La transici¨®n de fase ¦©4/mcm¡úPm3m en Sr0.5Ba0.5HfO3-¦Ä
Autor/es:
A. LOPEZ GARCIA; C. HOROWITZ; R. E. ALONSO
Revista:
BOLETíN DE LA SOCIEDAD ESPAñOLA DE CERáMICA Y VIDRIO
Editorial:
SOC ESPANOLA CERAMICA VIDRIO
Referencias:
Año: 2001 vol. 40 p. 263 - 266
ISSN:
0366-3175
Resumen:
The effect of partial substitution of cations in AMO3 compounds have been studied because the physical properties and applications of these materials can be improved. In particular we are interested in the Sr1-xBaxHfO3 family. In SrHfO3 the phase transition to cubic structure has been observed to occur when the angle between two consecutive oxygen octahedra tends to zero. Instead in BaHfO3 no phase transition was observed. These facts were attributed to depend on the atomic radius of A cation. In this contribution the study of Sr0.5Ba0.5HfO3 oxide is shown. The compound was prepared by the high temperature solid state reaction method and analyzed by X-ray diffraction and Perturbed Angular Correlation (PAC) Spectroscopy at different temperatures. Diffraction studies revealed that about 400-420º C a structural phase transition from I4/mcm to Pm3m occurred by tending to zero the rotation angle. By PAC this transition was also observed. In the cubic phase the electric field gradient EFG measured were produced by defects. The same model applied to interpreted the results of BaTi1-xHfxO33 compounds have been studied because the physical properties and applications of these materials can be improved. In particular we are interested in the Sr1-xBaxHfO3 family. In SrHfO3 the phase transition to cubic structure has been observed to occur when the angle between two consecutive oxygen octahedra tends to zero. Instead in BaHfO3 no phase transition was observed. These facts were attributed to depend on the atomic radius of A cation. In this contribution the study of Sr0.5Ba0.5HfO3 oxide is shown. The compound was prepared by the high temperature solid state reaction method and analyzed by X-ray diffraction and Perturbed Angular Correlation (PAC) Spectroscopy at different temperatures. Diffraction studies revealed that about 400-420º C a structural phase transition from I4/mcm to Pm3m occurred by tending to zero the rotation angle. By PAC this transition was also observed. In the cubic phase the electric field gradient EFG measured were produced by defects. The same model applied to interpreted the results of BaTi1-xHfxO31-xBaxHfO3 family. In SrHfO3 the phase transition to cubic structure has been observed to occur when the angle between two consecutive oxygen octahedra tends to zero. Instead in BaHfO3 no phase transition was observed. These facts were attributed to depend on the atomic radius of A cation. In this contribution the study of Sr0.5Ba0.5HfO3 oxide is shown. The compound was prepared by the high temperature solid state reaction method and analyzed by X-ray diffraction and Perturbed Angular Correlation (PAC) Spectroscopy at different temperatures. Diffraction studies revealed that about 400-420º C a structural phase transition from I4/mcm to Pm3m occurred by tending to zero the rotation angle. By PAC this transition was also observed. In the cubic phase the electric field gradient EFG measured were produced by defects. The same model applied to interpreted the results of BaTi1-xHfxO33 no phase transition was observed. These facts were attributed to depend on the atomic radius of A cation. In this contribution the study of Sr0.5Ba0.5HfO3 oxide is shown. The compound was prepared by the high temperature solid state reaction method and analyzed by X-ray diffraction and Perturbed Angular Correlation (PAC) Spectroscopy at different temperatures. Diffraction studies revealed that about 400-420º C a structural phase transition from I4/mcm to Pm3m occurred by tending to zero the rotation angle. By PAC this transition was also observed. In the cubic phase the electric field gradient EFG measured were produced by defects. The same model applied to interpreted the results of BaTi1-xHfxO30.5Ba0.5HfO3 oxide is shown. The compound was prepared by the high temperature solid state reaction method and analyzed by X-ray diffraction and Perturbed Angular Correlation (PAC) Spectroscopy at different temperatures. Diffraction studies revealed that about 400-420º C a structural phase transition from I4/mcm to Pm3m occurred by tending to zero the rotation angle. By PAC this transition was also observed. In the cubic phase the electric field gradient EFG measured were produced by defects. The same model applied to interpreted the results of BaTi1-xHfxO31-xHfxO3 and the atomic positions determined by X-ray diffraction were used. This calculation reproduces reasonably the temperature dependence of the EFG measured by PAC. Key words: Perovskites, atomic positions, phase transitions, hyperfine interactions, defects.