IFLP   13074
INSTITUTO DE FISICA LA PLATA
Unidad Ejecutora - UE
congresos y reuniones científicas
Título:
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space
Autor/es:
H. FALOMIR
Lugar:
Santiago
Reunión:
Congreso; XVIII International Congress on Mathematical Physics; 2015
Institución organizadora:
International Association of Mathematical Physics
Resumen:
We study two-dimensional Hamiltonians in phase space with noncommutativityboth in coordinates and momenta. We consider the generator ofrotations on the noncommutative plane and the Lie algebra generated byHermitian rotationally invariant quadratic forms of noncommutative dynamicalvariables. We show that two quantum phases are possible, characterized bythe Lie algebras sl (2, R) or su(2) according to the relation between the noncommutativityparameters, with the rotation generator related with the Casimiroperator. From this algebraic perspective, we analyze the spectrum of somesimple models with nonrelativistic rotationally invariant Hamiltonians in thisnoncommutative phase space, such as the isotropic harmonic oscillator, theLandau problem and the cylindrical well potential.