INVESTIGADORES
BENAVIDES Maria patricia
artículos
Título:
Adaptation of sunflower to high NaCl levels. Polyamines and proline roles.
Autor/es:
ALVAREZ I; TOMARO ML; BENAVIDES MP
Revista:
PLANT CELL TISSUE AND ORGAN CULTURE
Editorial:
SpringerLink
Referencias:
Lugar: Netherlands; Año: 2003 vol. 74 p. 51 - 59
ISSN:
0167-6857
Resumen:
Responses of sunflower tissues to NaCl stress were studied in control (C), salt-stressed (S) and salt-adapted (T) calluses in terms of proline, polyamines and ethylene content for a period of 21 days. Salt-adapted calluses showed their adaptation to salinity by growing in the medium with 175 mM NaCl, at a similar rate than C calluses on medium without salt. Proline concentration was 27 times higher in salt-adapted calluses compared to control calluses at time 0, but salt stressed calluses (S calluses) were able to increase proline by day 21, demonstrating that proline was not just an osmoregulator but might be involved in other responses in sunflower salt-stressed calluses. Putrescine (Put) was the most abundant polyamine in C calluses at time 0, while spermidine (Spd) was the main polyamine in salt tolerant (T) calluses. Ethylene increased in C calluses until day 14, decreasing thereafter. In salt-adapted calluses, ethylene increased significantly over the concentration in C and S calluses by the end of the experiment. In control calluses, the highest level of total polyamines and the lowest of ethylene was found on day 21, while T calluses synthesized the highest ethylene level and had the lower polyamines level by this time. It seems that in salt-adapted calluses ethylene was related to stress tolerance and in salt sensitive tissues (S calluses), ethylene formation was related to senescence. The present data suggests a close relationship between proline, polyamines, ethylene and salt-stress tolerance in sunflower dedifferentiated tissues.