INVESTIGADORES
BENAVIDES Maria patricia
artículos
Título:
Polyamines and heavy metal stress: the antioxidant behavior of spermine
Autor/es:
GROPPA MD; TOMARO ML; BENAVIDES MP
Revista:
BIOMETALS
Editorial:
Springer
Referencias:
Año: 2007 vol. 20 p. 185 - 195
ISSN:
0966-0844
Resumen:
Polyamine metabolism, as well as spermine (Spm) antioxidant properties, were studied in wheat leaves under Cd2+ or Cu2+ stress. The oxidative damage produced by both metals was evidenced by an increased of thiobarbituric acid reactive substances (TBARS) and a significant decrease in glutathione under both metal treatments. Ascorbate peroxidase (APOX) and glutathione reductase (GR) activities were reduced by both metals to values ranging from 30% to 64% of the control values. Conversely, copper produced a raise in superoxide dismutase activity. The high putrescine (Put) content detected under Cd2+ stress (282% over the control) was induced by the increased activity of both enzymes involved in Put biosynthesis, arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). However, only ODC activity was increased in wheat leaves subjected to Cu2+ stress, leading to a lower Put rise (89% over the controls). Spermidine (Spd) content was not affected by metal treatments, while Spm was significantly reduced. Pretreatment with Spm completely reverted the metals-induced TBARS increase whereas metals-dependent H2O2 deposition on leaf segments (revealed using diaminobenzidine), was considerably reduced in Spm pretreated leaf segments. This polyamine failed to reverse the depletion in APOX activity and glutathione (GSH) content produced by Cd2+ and Cu2+, although it showed an efficient antioxidant behavior in the restoration of GR activity to control values. These results suggest that Spm could be exerting a certain antioxidant function by protecting the tissues from the metals-induced oxidative damage, though this effect was not enough to completely avoid Cd2+ and Cu2+ effect on certain antioxidant enzymes, though the precise mechanism of protection still needs to be elucidated