INVESTIGADORES
VENERO Roberto Oscar JosÉ
artículos
Título:
Atmospheric NLTE-models for the spectroscopic analysis of blue stars with winds. II. Line-blanketed models
Autor/es:
PULS, J.; URBANEJA, M.; VENERO, R.; REPOLUST, T.; SPRINGMANN, U.; JOKUTHY, A.; MOKIEM, M.
Revista:
ASTRONOMY AND ASTROPHYSICS
Editorial:
EdP Sciences
Referencias:
Lugar: Les Ulis - Francia; Año: 2005 vol. 435 p. 669 - 698
ISSN:
0004-6361
Resumen:
We present new or improved methods for calculating NLTE, line-blanketed model atmospheres for hot stars with winds (spectral types A to O), with particular emphasis on fast performance. These methods have been implemented into a previous, more simple version of the model atmosphere code Fastwind (Santolaya-Rey et al. 1997) and allow us to spectroscopically analyze large samples of massive stars in a reasonable time-scale, using state-of-the-art physics. Although this updated version of the code has already been used in a number of recent investigations, the corresponding methods have not been explained in detail so far, and no rigorous comparison with results from alternative codes has been performed. This paper intends to address both topics. In particular, we describe our (partly approximate) approach to solve the equations of statistical equilibrium for those elements that are primarily responsible for line-blocking and blanketing, as well as an approximate treatment of the line-blocking itself, which is based on a simple statistical approach using suitable means of line opacities and emissivities. Both methods are validated by specific tests. Furthermore, we comment on our implementation of a consistent temperature structure. In the second part, we concentrate on a detailed comparison with results from two codes used in alternative spectroscopical investigations, namely cmfgen (Hillier & Miller 1998) and wm-Basic (Pauldrach et al. 2001). All three codes predict almost identical temperature structures and fluxes for λ > 400 Å, whereas at lower wavelengths a number of discrepancies are found. Particularly in the Heii continua, where fluxes and corresponding numbers of ionizing photons react extremely sensitively to subtle differences in the models, we consider any uncritical use of these quantities (e.g., in the context of nebula diagnostics) as unreliable. Optical H/He lines as synthesized by fastwind are compared with results from cmfgen, obtaining a remarkable coincidence, except for the Hei singlets in the temperature range between 36 000 to 41 000 K for dwarfs and between 31 000 to 35 000 K for supergiants, where cmfgen predicts much weaker lines. Consequences of these discrepancies are discussed. Finally, suggestions are presented as to adequately parameterize model-grids for hot stars with winds, with only one additional parameter compared to standard grids from plane-parallel, hydrostatic models.