INVESTIGADORES
FORTE Pablo Brian
artículos
Título:
Outgassing through magmatic fractures enables effusive eruption of silicic magma
Autor/es:
CROZIER, J.A.; TRAMONTANO, S.; FORTE, P.; OLIVA, S.J.C.; GONNERMANN, H.; LEV, E.; MANGA, M.; MYERS, M.; RADER, E.; RUPRECHT, P.; TUFFEN, H.; PAISLEY, R.; HOUGHTON, B. F.; SHEA, T.; SCHIPPER, C.I.; CASTRO, J.
Revista:
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2022 vol. 430
ISSN:
0377-0273
Resumen:
Several mechanisms have been proposed to allow highly viscous silicic magma to outgas efficiently enough to erupt effusively. There is increasing evidence that challenges the classic foam-collapse model in which gas escapes through permeable bubble networks, and instead suggests that magmatic fracturing and/or accompanying localized fragmentation and welding within the conduit play an important role in outgassing. The 2011–2012 eruption at Cord ́on Caulle volcano, Chile, provides direct observations of the role of magmatic fractures. This eruption exhibited a months-long hybrid phase, in which rhyolitic lava extrusion was accompanied by vigorous gas-and-tephra venting through fractures in the lava dome surface. Some of these fractures were preserved as tuffisites (tephra-filled veins) in erupted lava and bombs. We integrate constraints from petrologic analyses of erupted products and video analyses of gas-and-tephra venting to construct a model for magma ascent in a conduit. The one-dimensional, two-phase, steady-state model considers outgassing through deforming permeable bubble networks, magmatic fractures, and adjacent wall rock. Simulations for a range of plausible magma ascent conditions indicate that the eruption of low-porosity lava observed at Cord ́on Caulle volcano occurs because of significant gas flux through fracture networks in the upper conduit. This modeling emphasizes the important role that outgassing through magmatic fractures plays in sustaining effusive or hybrid eruptions of silicic magma and in facilitating explosive-effusive transitions.