BECAS
PAVAN Maria Florencia
artículos
Título:
Development of Nanobody-Displayed Whole-Cell Biosensors for the Colorimetric Detection of SARS-CoV-2
Autor/es:
HE, YAWEN; XU, ZHIYUAN; KASPUTIS, TOM; ZHAO, XUE; IBAÑEZ, ITATI; PAVAN, FLORENCIA; BOK, MARINA; MALITO, JUAN PABLO; PARRENO, VIVIANA; YUAN, LIJUAN; WRIGHT, R. CLAY; CHEN, JUHONG
Revista:
ACS APPLIED MATERIALS & INTERFACES
Editorial:
AMER CHEMICAL SOC
Referencias:
Año: 2023 vol. 15 p. 37184 - 37192
ISSN:
1944-8244
Resumen:
The accurate and effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to preventing the spread of infectious diseases and ensuring human health. Herein, a nanobody-displayed whole-cell biosensor was developed for colorimetric detection of SARS-CoV-2 spike proteins. Serving as bioreceptors, yeast surfaces were genetically engineered to display SARS-CoV-2 binding of llama-derived single-domain antibodies (nanobodies) with high capture efficiency, facilitating the concentration and purification of SARS-CoV-2. Gold nanoparticles (AuNPs) employed as signal transductions were functionalized with horseradish peroxidase (HRP) and anti-SARS monoclonal antibodies to enhance the detection sensitivity. In the presence of SARS-CoV-2 spike proteins, the sandwiched binding will be formed by linking engineered yeast, SARS-CoV-2 spike proteins, and reporter AuNPs. The colorimetric signal was generated by the enzymatic reaction of HRP and its corresponding colorimetric substrate/chromogen system. At the optimal conditions, the developed whole-cell biosensor enables the sensitive detection of SARS-CoV-2 spike proteins in a linear range from 0.01 to 1 μg/mL with a limit of detection (LOD) of 0.037 μg/mL (about 4 × 108 virion particles/mL). Furthermore, the whole-cell biosensor was demonstrated to detect the spike protein of different SARS-CoV-2 variants in human serum, providing new possibilities for the detection of future SARS-CoV-2 variants.