INVESTIGADORES
SESMA Juliana Ines
artículos
Título:
SPX-101 is stable in and retains function after exposure to cystic fibrosis sputum
Autor/es:
SESMA, JULIANA I.; WU, BRYANT; STUHLMILLER, TIMOTHY J.; SCOTT, DAVID W.
Revista:
JOURNAL OF CYSTIC FIBROSIS
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Año: 2019 vol. 18 p. 244 - 250
ISSN:
1569-1993
Resumen:
Background: In healthy lungs, epithelial sodium channel (ENaC) is regulated by short, palate, lung, and nasal clone 1 (SPLUNC1). In cystic fibrosis (CF), ENaC is hyperactivated in part due to a loss of SPLUNC1 function. We have developed SPX-101 to replace the lost function of SPLUNC1 in the CF lung. Methods: Expression of SPLUNC1 was determined in sputum from healthy and CF donors. Stability of SPLUNC1, S18 (the ENaC regulatory domain of SPLUNC1), and SPX-101 was determined in sputum from CF donors and towards neutrophil elastase. Activity of SPX-101 after exposure to CF sputum was determined in airway epithelial cells from CF donors and in the βENaC transgenic mouse model. Results: SPLUNC1 protein expression is significantly reduced in CF as compared to healthy sputum. SPLUNC1 is rapidly degraded in CF sputum as well as by a number of individual proteases known to be found in the sputum. SPX-101, but not S18, is stable in CF sputum. Finally, SPX-101 retains its ability to internalize ENaC, regulate airway surface liquid height, and increase survival of βENaC mice after exposure to CF sputum. Conclusions: Our results demonstrate that SPX-101, but not SPLUNC1 or S18, is stable in CF sputum. These results support the therapeutic development of SPX-101 for the treatment of cystic fibrosis.