INVESTIGADORES
COSENTINO Nicolas Juan
artículos
Título:
Present-day Patagonian dust emissions: Combining surface visibility, mass flux and reanalysis data
Autor/es:
COSENTINO, N. J.; GAIERO, D. M.; LAMBERT, F.
Revista:
Journal of Geophysical Research: Atmospheres
Editorial:
Wiley
Referencias:
Año: 2021 vol. 126
Resumen:
The magnitude of the climatic forcing associated with mineral dust aerosols remains uncertain due in part to a lack of observations on dust sources. While modeling and satellite studies provide spatially extensive constraints, they must be supported by surface-validating dust monitoring. Southern South America is the main dust source to the southern oceans (>45°S), a region of low biological productivity potentially susceptible to increased micronutrient fertilization through dust deposition, as well as one of the main dust sources to Antarctica, implying long-range transport of dust from Patagonia and potentially affecting snow cover albedo. We present multiyear time series of dust-related visibility reduction (DRVR) and dust mass flux in Patagonia. We find that local DRVR is partly controlled by long-term (i.e., months) water deficit, while same-day conditions play a smaller role, reflective of water retention properties of fine-grained dust-emitting soils in low-moisture conditions. This is supported independently by reanalysis data showing that large-scale dust outbreaks are usually associated with anomalously high long-term water deficit. By combining visibility data, surface dust sampling, and particle dispersion modeling, we derive regional dust emission rates. Our results suggest that the inclusion of long-term soil hydrologic balance parameterizations under low-moisture conditions may improve the performance of dust emission schemes in Earth system models.