BECAS
TRUCHET Daniela MarÍa
artículos
Título:
Macroecotoxicological approaches to emerging patterns of microplastic bioaccumulation in crabs from estuarine and marine environments
Autor/es:
TRUCHET, D. M.; BUZZI, N. S.; MOULATLET, G.M.; CAPPARELLI, M.V.
Revista:
SCIENCE OF THE TOTAL ENVIRONMENT
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2023
ISSN:
0048-9697
Resumen:
Despite the increasing plastic discharge into the environment, few articles have dealt with the macroecological implications of microplastics (MPs) bioaccumulation on organisms. We performed a meta-analysis of MPs accumulation in true crabs and pseudocrabs worldwide and made use of macroecotoxicological approaches to know if: I) functional traits influence the bioaccumulation of MPs in the tissues of crabs; II) there is a latitudinal pattern of MPs bioaccumulation; III) there are tissues that can accumulate more MPs; IV) crabs can sort particles according to size, color, shape and type. Our results showed that functional traits influence the accumulation of MPs. Smaller crabs in size and weight and with shorter lifespans tended to exhibit more plastic particles. According to the environment, estuarine crabs from the intertidal and muddy substrates held more MPs. Also, burrowers exhibited significantly more particles in the tissues than omnivorous crabs. Besides, we recorded that crabs from low latitudes tended to exhibit more plastic particles, probably because of the mangroves´ location that acts as traps for MPs. Non-human-consumed crabs accumulated significantly more MPs than human-consumed ones. Considering the tissues, gills were prone to accumulate more debris than the digestive tract, but without significant differences. Finally, colorless fibers of 1–5 mm of PA, PP and PET were the predominant characteristics of MPs, suggesting that crabs accumulated denser types but did not sort plastic according to color. These results indicate that functional traits might influence the accumulation of MPs and that there are coastal regions and geographical areas where crabs tend to accumulate more MPs. Analyzing MPs accumulation patterns with macroecological tools can generate information to identify the most affected species and define priorities for monitoring and implementing actions toward reducing plastic use globally