INVESTIGADORES
COLABELLA Lucas
artículos
Título:
Effect of collagen fibril orientation on the anisotropic properties of peri-implant bone
Autor/es:
COLABELLA, LUCAS; NAILI, SALAH; LE CANN, SOPHIE; HAIAT, GUILLAUME
Revista:
Biomechanics and Modeling in Mechanobiology
Editorial:
Springer Science and Business Media Deutschland GmbH
Referencias:
Año: 2024
Resumen:
In orthopedic and dental surgery, the implantation of biomaterials within the bone to restore the integrity of the treated organ has become a standard procedure. Their long-term stability relies on the osseointegration phenomena, where bone grows onto and around metallic implants, creating a bone-implant interface. Bone is a highly hierarchical material that evolves spatially and temporally during this healing phase. A deeper understanding of its biomechanical characteristics is needed, as they are determinants for surgical success. In this context, we propose a multiscale homogenization model to evaluate the effective elastic properties of bone as a function of the distance from the implant, based on the tissue’s structure and composition at lower scales. The model considers three scales: hydroxyapatite foam (nanoscale), ultrastructure (microscale), and tissue (mesoscale). The elastic properties and the volume fraction of the elementary constituents of bone matrix (mineral, collagen, and water), the orientation of the collagen fibril relative to the implant surface, and the mesoscale porosity constitute the input data of the model. The effect of a spatiotemporal variation in the collagen fibrils’ orientation on the bone anisotropic properties in the proximity of the implant was investigated. The findings revealed a strong variation of the components of the effective elasticity tensor of the bone as a function of the distance from the implant. The effective elasticity appears to be primarily sensitive to the porosity (mesoscale) rather than to the collagen fibrils’ orientation (sub-micro scale). However, the orientation of the fibrils has a significant influence on the isotropy of the bone. When analyzing the symmetry properties of the effective elasticity tensor, the ratio between the isotropic and hexagonal components is determined by a combination of the porosity and the fibrils’ orientation. A decrease in porosity leads to a decrease in bone isotropy and, in turn, an increase in the impact of the fibrils’ orientation. These results demonstrate that the collagen fibril orientation should be taken into account to properly describe the effective elastic anisotropy of bone at the organ scale.