INVESTIGADORES
FLEXER Victoria
artículos
Título:
Biologically-induced hydrogen production drives high rate / high efficiencymicrobial electrosynthesis of acetate from carbon dioxide
Autor/es:
JOURDIN, L.; Y. LU; VICTORIA FLEXER; KELLER, J; FREGUIA, S.
Revista:
ChemElectroChem
Editorial:
Wiley
Referencias:
Año: 2016 vol. 3 p. 581 - 591
Resumen:
Electron-transfer pathways occurring in biocathodes are still unknown. We demonstrate here that high rates of acetate production by microbial electrosynthesis are mainly driven by an electron flux from the electrode to carbon dioxide, occurring via biologically induced hydrogen, with (99±1) % electron recovery into acetate. Nevertheless, acetate production is shown to occur exclusively within the biofilm. The acetate producers, putatively Acetoanaerobium, showed the remarkable ability to consume a high H2 flux before it could escape from the biofilm. At zero wastage of H2 gas, it allows superior production rates and lesser technical bottlenecks over technologies that rely on mass transfer of H2 to microorganisms suspended in aqueous solution. This study suggests that bacterial modification of the electrode surface (possibly via synthesis of Cu nanoparticles) is directly involved in the significant enhancement of the hydrogen production.