INVESTIGADORES
CANIFFI Carolina Cecilia
artículos
Título:
Renal actions of atrial natriuretic peptide in spontaneously hypertensive rats: the role of nitric oxide as a key mediator
Autor/es:
ELESGARAY ROSANA; CANIFFI CAROLINA; SAVIGNANO LUCÍA; ROMERO MARIANA; MAC LAUGHLIN MYRIAM; ARRANZ CRISTINA; COSTA MARÍA DE LOS ÁNGELES
Revista:
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Editorial:
AMER PHYSIOLOGICAL SOC
Referencias:
Año: 2012 vol. 302 p. 1385 - 1394
ISSN:
1931-857X
Resumen:
Atrial natriuretic peptide (ANP) is an important regulator of blood pressure (BP). One of the mechanisms whereby ANP impacts BP is by stimulation of nitric oxide (NO) production in different tissues involved in BP control. We hypothesized that ANP-stimulated NO is impaired in the kidneys of spontaneously hypertensive rats (SHR) and this contributes to the development and/or maintenance of high levels of BP. We investigated the effects of ANP on the NO system in SHR, studying the changes in renal nitric oxide synthase (NOS) activity and expression in response to peptide infusion, the signaling pathways implicated in the signaling cascade that activates NOS, and identifying the natriuretic peptide receptors (NPR), guanylyl cyclase receptors (NPR-A and NPR-B) and/or NPR-C, and NOS isoforms involved. In vivo, SHR and Wistar-Kyoto rats (WKY) were infused with saline (0.05 ml/min) or ANP (0.2 μg·kg(-1)·min(-1)). NOS activity and endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) NOS expression were measured in the renal cortex and medulla. In vitro, ANP-induced renal NOS activity was determined in the presence of iNOS and nNOS inhibitors, NPR-A/B blockers, guanine nucleotide-regulatory (G(i)) protein, and calmodulin inhibitors. Renal NOS activity was higher in SHR than in WKY. ANP increased NOS activity, but activation was lower in SHR than in WKY. ANP had no effect on expression of NOS isoforms. ANP-induced NOS activity was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in kidney. The renal NOS response to ANP was reduced by G(i) protein and calmodulin inhibitors. We conclude that ANP interacts with NPR-C, activating Ca-calmodulin eNOS through G(i) protein. NOS activation also involves NPR-A/B. The NOS response to ANP was diminished in kidneys of SHR. The impaired NO system response to ANP in SHR participates in the maintenance of high blood pressure.