INVESTIGADORES
MONGE Maria Eugenia
congresos y reuniones científicas
Título:
Photoenhanced NO2 loss on simulated urban grime
Autor/es:
RACHID AMMAR; MARIA EUGENIA MONGE; BARBARA D'ANNA; CHRISTIAN GEORGE
Reunión:
Encuentro; American Geophysical Union Fall Meeting; 2010
Institución organizadora:
AGU
Resumen:
Solid and liquid particles provide surfaces for heterogeneous reaction, influencing the abundance and distribution of trace gases affecting air quality in urban environments. However, condensed matter can even be found on films coating urban surfaces (such as roads and buildings), also called ?urban grime?. The present study focuses on the heterogeneous reaction between gaseous NO2 and solid films used as a proxy of ?urban grime?. These reactions were investigated under simulated atmospheric conditions with respect to relative humidity, NO2 concentration and irradiation using a coated wall flow tube reactor. This proxy was tested by the mixture of organic compounds (pyrene), inorganic compounds (potassium nitrate) and Metals (iron oxide). The geometric steady-state uptake coefficients (γgeo) obtained when pyrene/KNO3 films are exposed to 50 ppbv of NO2 ranged from 1.12×10-7 in the dark to 2.67×10-6 under near-UV irradiation (300-420 nm) and decreased with increasing NO2 concentration in the range 30-120 ppbv. The NO2 removal is linearly dependent on the light intensity with release of gas-phase NO and HONO, which rapidly photodissociates to form OH in the troposphere. The analysis of this film by IC and GC-MS showed the formation of nitrite ion and traces of 1-nitropyrene. A light-induced reaction mechanism is proposed for this system. The results discussed here suggest that urban ?grime? on windows and buildings containing PAHs may be a key player in urban air pollution. The presence of iron oxide in the film is currently being treated in order to know its effect and reactivity towards organic compounds and gas-phase NO2 under irradiation and to see how can real urban film surfaces be photoenhanced in the presence of gas-phase NO2.