INVESTIGADORES
VARGAS Walter Alberto
artículos
Título:
A [NiFe] hydrogenase from Alteromonas macleodii with unusual stability.
Autor/es:
VARGAS WA, WEYMAN PD, TONG Y, SMITH HO, AND QING XU
Revista:
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Editorial:
AMER SOC MICROBIOLOGY
Referencias:
Año: 2011 vol. 77 p. 1990 - 1998
ISSN:
0099-2240
Resumen:
Hydrogenases are enzymes involved in the bioproduction of hydrogen, a clean alternative energy source whose combustion generates water as the only end product. In this article we identified and characterized a [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii "deep ecotype" with unusual stability toward oxygen and high temperature. The A. macleodii hydrogenase (HynSL) can catalyze both H2 evolution and H2 uptake reactions. HynSL was expressed in A. macleodii under aerobic conditions and reached the maximum activity when the cells entered the late exponential phase. The higher level of hydrogenase activity was accompanied by a greater abundance of the HynSL protein in the late-log or stationary phase. The addition of nickel to the growth medium significantly enhanced the hydrogenase activity. Ni treatment affected the level of the protein, but not the mRNA, indicating that the effect of Ni was exerted at the posttranscriptional level. Hydrogenase activity was distributed 30% in the membrane fraction and 70% in the cytoplasmic fraction. Thus, HynSL appears to be loosely membrane-bound. Partially purified A. macleodii hydrogenase demonstrated extraordinary stability. It retained 84% of its activity after exposure to 80°C for 2 h. After exposure to air for 45 days at 4°C, it retained nearly 100% of its activity when assayed under anaerobic conditions. Its catalytic activity in the presence of O2 was evaluated by the hydrogen-deuterium (H-D) exchange assay. In 1% O2, 20.4% of its H-D exchange activity was retained. The great stability of HynSL makes it a potential candidate for biotechnological applications.