INVESTIGADORES
BONACCI Gustavo Roberto
artículos
Título:
Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion
Autor/es:
RUDOLPH V, RUDOLPH TK, SCHOPFER FJ, BONACCI G, WOODCOCK SR, COLE MP, BAKER PR, RAMANI R, FREEMAN BA.
Revista:
CARDIOVASCULAR RESEARCH
Editorial:
OXFORD UNIV PRESS
Referencias:
Año: 2010 vol. 85 p. 155 - 166
ISSN:
0008-6363
Resumen:
AIMS: Nitrated fatty acids (NO(2)-FA) have been identified as endogenous anti-inflammatory signalling mediators generated by oxidative inflammatory reactions. Herein the in vivo generation of nitro-oleic acid (OA-NO(2)) and nitro-linoleic acid (LNO(2)) was measured in a murine model of myocardial ischaemia and reperfusion (I/R) and the effect of exogenous administration of OA-NO(2) on I/R injury was evaluated. METHODS AND RESULTS: In C57/BL6 mice subjected to 30 min of coronary artery ligation, endogenous OA-NO(2) and LNO(2) formation was observed after 30 min of reperfusion, whereas no NO(2)-FA were detected in sham-operated mice and mice with myocardial infarction without reperfusion. Exogenous administration of 20 nmol/g body weight OA-NO(2) during the ischaemic episode induced profound protection against I/R injury with a 46% reduction in infarct size (normalized to area at risk) and a marked preservation of left ventricular function as assessed by transthoracic echocardiography, compared with vehicle-treated mice. Administration of OA-NO(2) inhibited activation of the p65 subunit of nuclear factor kappaB (NFkappaB) in I/R tissue. Experiments using the NFkappaB inhibitor pyrrolidinedithiocarbamate also support that protection lent by OA-NO(2) was in part mediated by inhibition of NFkappaB. OA-NO(2) inhibition of NFkappaB activation was accompanied by suppression of downstream intercellular adhesion molecule 1 and monocyte chemotactic protein 1 expression, neutrophil infiltration, and myocyte apoptosis. CONCLUSION: This study reveals the de novo generation of fatty acid nitration products in vivo and reveals the anti-inflammatory and potential therapeutic actions of OA-NO(2) in myocardial I/R injury.