INVESTIGADORES
MARTINEZ CALEJMAN Camila
artículos
Título:
Rictor/mTORC2 Loss in the Myf5 Lineage Reprograms Brown Fat Metabolism and Protects Mice against Obesity and Metabolic Disease
Autor/es:
HUNG, CHIEN-MIN; CALEJMAN, CAMILA MARTINEZ; SANCHEZ-GURMACHES, JOAN; LI, HUAWEI; CLISH, CLARY B.; HETTMER, SIMONE; WAGERS, AMY J.; GUERTIN, DAVID A.
Revista:
Cell Reports
Editorial:
CELL PRESS
Referencias:
Lugar: Cambridge; Año: 2014 vol. 8 p. 256 - 271
ISSN:
2211-1247
Resumen:
The in vivo functions of mechanistic target of rapamycin complex 2 (mTORC2) and the signaling mechanisms that control brown adipose tissue (BAT) fuel utilization and activity are not well understood. Here, by conditionally deleting Rictor in the Myf5 lineage, we provide in vivo evidence that mTORC2 is dispensable for skeletal muscle development and regeneration but essential for BAT growth. Furthermore, deleting Rictor in Myf5 precursors shifts BAT metabolism to a more oxidative and less lipogenicstate and protects mice from obesity and metabolic disease at thermoneutrality. We additionally find that Rictor is required for brown adipocyte differentiation in vitro and that the mechanism specifically requiresAKT1 hydrophobic motif phosphorylation butis independent of pan-AKT signaling and is rescued with BMP7. Our findings provide insights into the signaling circuitry that regulates brown adipocytes and could have important implications for developing therapies aimed at increasing energy expenditureas a means to combat human obesity.