INVESTIGADORES
DUARTE Hernan Antonio
artículos
Título:
Selective synthesis of p-ethylphenol by gas-phase alkylation of phenol with ethanol
Autor/es:
MARÍA EUGENIA SAD; HERNÁN ANTONIO DUARTE; CRISTINA LILIANA PADRÓ; CARLOS RODOLFO APESTEGUÍA
Revista:
APPLIED CATALYSIS A-GENERAL
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2014 vol. 486 p. 77 - 84
ISSN:
0926-860X
Resumen:
The selective synthesis of p-ethylphenol from gas-phase alkylation of phenol with ethanol was studied on zeolites HZSM5 and HMCM22 at 523K. Phenol reacted directly with ethanol to form ethylphenylether by O-alkylation, and p- and o-ethylphenol isomers by C-alkylation; secondary products were m-ethylphenol and dialkylated compounds. Both zeolites presented similar activity and formed low amounts of ethylphenylether and dialkylated products, but exhibited different ethylphenol isomers distribution. In fact, for a contact time of 99.3 g h/mol the selectivity to p-ethylphenol was 51.4% on HMCM22 and only 14.2% on HZSM5. The superior performance of zeolite HMCM22 for selectively producing p-ethylphenol was due to its narrower pore channels that suppressed the formation of dialkylated products and hampered by diffusional constraints the formation of o-ethylphenol. The maximum p-ethylphenol yield obtained on HMCM22 was 41% at a contact time of 250 g h/mol; for higher contact times, p-ethylphenol was increasingly converted to m-ethylphenol. All the samples deactivated on stream because of coke formation. The carbon amount built on HMCM22 diminished when contact time was increased thereby indicating that coke was mainly formed from the reactants. Additional catalytic runs showed that phenol was the main responsible of catalyst deactivation, probably because of its strong adsorption on surface active sites.