INVESTIGADORES
FRUTOS Mariano
artículos
Título:
OBJECTIVE SPACE DIVISION-BASED HYBRID EVOLUTIONARY ALGORITHM FOR HANDLING OVERLAPPING SOLUTIONS
Autor/es:
BEGOÑA GONZÁLEZ; DANIEL A. ROSSIT; MÁXIMO MÉNDEZ; MARIANO FRUTOS
Revista:
Mathematical Biosciences and Engineering
Editorial:
AIMS PRESS
Referencias:
Año: 2022 vol. 19 p. 3369 - 3401
ISSN:
1551-0018
Resumen:
Overlapping solutions occur when more than one solution in the space of decisions maps to the same solution in the space of objectives. This situation threatens the exploration capacity of Multi-Objective Evolutionary Algorithms (MOEAs), preventing them from having a good diversity in their population. The influence of overlapping solutions is intensified on multi-objective combinatorial problems with a low number of objectives. This paper presents a hybrid MOEA for handling overlapping solutions that combines the classic NSGA-II with a strategy based on Objective Space Division (OSD). Basically, in each generation of the algorithm, the objective space is divided into several regions using the nadir solution calculated from the current generation solutions. Furthermore, the solutions in each region are classified into non-dominated fronts using different optimization strategies in each of them. This significantly enhances the achieved diversity of the approximate front of non-dominated solutions. The proposed algorithm (called NSGA-II/OSD) is tested on a classic Operations Research problem: the Multi-Objective Knapsack Problem (0-1 MOKP) with two objectives. Classic NSGA-II, MOEA/D and Global WASF-GA are used to compare the performance of NSGA-II/OSD. In the case of MOEA/D two different versions are implemented, each of them with a different strategy for specifying the reference point. These MOEA/D reference point strategies are thoroughly studied and new insights are provided. This paper analyses in depth the impact of overlapping solutions on MOEAs, studying the number of overlapping solutions, the number of solution repairs, the hypervolume metric, the attainment surfaces and the approximation to the real Pareto front, for different sizes of 0-1 MOKPs with two objectives. The proposed method offers very good performance when compared to the classic NSGA-II, MOEA/D and Global WASF-GA algorithms, all of them well-known in the literature.