INVESTIGADORES
TOLOZA Julio Hugo
artículos
Título:
Exponentially accurate error estimates of quasiclassical eigenvalues
Autor/es:
JULIO H. TOLOZA
Revista:
JOURNAL OF PHYSICS. A - MATHEMATICAL AND GENERAL
Editorial:
Institute of Physics Publishing
Referencias:
Lugar: Bristol; Año: 2001 vol. 34 p. 1203 - 1203
ISSN:
0305-4470
Resumen:
We study the behaviour of truncated Rayleigh-Schrödinger series for the low-lying eigenvalues of the one-dimensional, time-independent Schrödinger equation, in the semiclassical limit h->0. Under certain hypotheses on the potential V(x), we prove that for any given small h>0 there is an optimal truncation of the series for the approximate eigenvalues, such that the difference between an approximate and exact eigenvalue is smaller than exp(-C/h)$ for some positive constant C. We also prove the analogous results concerning the eigenfunctions.