INVESTIGADORES
ZUNINO SUAREZ Alejandro Octavio
capítulos de libros
Título:
Recurrent Neural Networks for Predicting Mobile Device State
Autor/es:
RODRIGUEZ, J. M.; ZUNINO, A.; TOMMASEL, A.; MATEOS, C.
Libro:
Encyclopedia of Information Science and Technology, Fourth Edition
Editorial:
IGI Global
Referencias:
Año: 2017; p. 6658 - 6670
Resumen:
Nowadays, mobile devices are ubiquitous in modern life as they allow users to perform virtually any task, from checking e-mails to playing video games. However, many of these operations are conditioned by the state of mobile devices. Therefore, knowing the current state of mobile devices and predicting their future states is a crucial issue in different domains, such as context-aware applications or ad-hoc networking. Several authors have proposed to use different machine learning methods for predicting some aspect of mobile devicesĀ“ future states. This work aims at predicting mobile devicesĀ“ battery charge, whether it is plugged to A/C, and screen and WiFi state. To fulfil this goal, the current state of a mobile device can be regarded as the consequence of the previous sequence of states, meaning that future states can be predicted by known previous ones. This work focuses on using Recurrent Neural Networks for predicting future states.
rds']