INVESTIGADORES
POLJAK Sebastian
artículos
Título:
Chromosomal localization of the telomeric (TTAGGG)n sequence in four species of armadillos (Dasypodidae) of Argentina: an approach to karyotype evolution of Xenarthra.
Autor/es:
LIZARRALDE M.S; A.D BOLZÁN; S. POLJAK; M.I.PIGOZZI; J.BUSTOS; M.S. MERANI
Revista:
CHROMOSOME RESEARCH
Editorial:
Springer Netherlands
Referencias:
Año: 2005 vol. 13 p. 777 - 784
ISSN:
0967-3849
Resumen:
Abstract The distribution of the vertebrate telomeric sequence (TTAGGG)n in four species of armadillos (Dasypodidae,n in four species of armadillos (Dasypodidae, Xenarthra), i.e. Chaetophractus villosus (2n = 60), Chaetophractus vellerosus (2n = 62), Dasypus hybridus (2n = 64) and Zaedyus pichiy (2n = 62) was examined by FISH with a peptide nucleic acid (PNA) probe. Besides theChaetophractus villosus (2n = 60), Chaetophractus vellerosus (2n = 62), Dasypus hybridus (2n = 64) and Zaedyus pichiy (2n = 62) was examined by FISH with a peptide nucleic acid (PNA) probe. Besides the expected telomeric hybridization, interstitial (centromeric) locations of the (TTAGGG)n sequence were observedn sequence were observed in one chromosome pair of Chaetophractus vellerosus and Zaedyus pichiy, suggesting chromosome fusion of ancestral chromosomes occurring during the evolution of Dasypodidae. In addition, all the species analysed showed one to four apparently telocentric chromosomes, exhibiting only two telomeric signals. However, the immunodetection study of kinetochore proteins on synaptonemal complex spreads from C. villosus showed that the apparently telocentric chromosomes have a tiny short arm that can be resolved only in the more elongated pachytene bivalents. This finding suggests that none of the species of armadillos possess true telocentric chromosomes. Our present results support a reduction in the diploid number by fusion of acrocentrics with loss of chromosome material as a tendency in Dasypodidae.Chaetophractus vellerosus and Zaedyus pichiy, suggesting chromosome fusion of ancestral chromosomes occurring during the evolution of Dasypodidae. In addition, all the species analysed showed one to four apparently telocentric chromosomes, exhibiting only two telomeric signals. However, the immunodetection study of kinetochore proteins on synaptonemal complex spreads from C. villosus showed that the apparently telocentric chromosomes have a tiny short arm that can be resolved only in the more elongated pachytene bivalents. This finding suggests that none of the species of armadillos possess true telocentric chromosomes. Our present results support a reduction in the diploid number by fusion of acrocentrics with loss of chromosome material as a tendency in Dasypodidae.