INVESTIGADORES
CANCELA Liliana Marina
artículos
Título:
A glutamate-dopamine interaction in the persistent enhanced response to amphetamine in nucleus accumbens core but not shell following a single restraint stress
Autor/es:
ALEJANDRA M PACCHIONI, MARTINE CADOR, CLAUDIA BREGONZIO AND LILIANA M CANCELA
Revista:
NEUROPSYCHOPHARMACOLOGY
Editorial:
Nature
Referencias:
Lugar: Inglaterra; Año: 2007 p. 1 - 11
ISSN:
0893-133X
Resumen:
The administration of psychostimulant drugs or stress can elicit a sensitized response to the stimulating and reinforcing properties of the drug. We previously demonstrated that a single restraint stress session enhanced d-amphetamine (d-AMPH)-induced locomotion the day after the stress session, which lasted up to 8 days. The present experiments were designed to identify the contribution of major dopamine (DA) brain areas in the short- and long-lasting enhancement of d-AMPH-induced locomotion following a single stress, and to test the involvement of N-methyl-D-aspartate (NMDA) receptors in that phenomena. To achieve our goal, 24 h and 8 days after a 2-h restraint stress session either with or without a NMDA receptor blockade, we measured locomotor activity and DA overflow in nucleus accumbens (NAcc) core and shell and caudate putamen (CPu) following a d-AMPH injection (0.5 mg/kg i.p.). The stimulant effect of d-AMPH on DA overflow was enhanced in all nuclei at 24 h after a single stress, while at 8 days the enhanced responsiveness was maintained only in the NAcc core. When the rats were administered with MK-801 (0.1 mg/kg i.p.) 30 min before restraint stress, the d-AMPH-induced enhancement on locomotor activity and DA neurotransmission was prevented in all studied brain areas at both times. These findings show that a glutamate–dopamine link is underlying the short- and long- term d-AMPH-induced enhancement on DA and locomotor activity following stress. The persistent glutamate-dependent DA enhancement in NAcc core highlights the relevance of this region in the long-term proactive effects of stress on vulnerability to drug abuse d-AMPH on DA overflow was enhanced in all nuclei at 24 h after a single stress, while at 8 days the enhanced responsiveness was maintained only in the NAcc core. When the rats were administered with MK-801 (0.1 mg/kg i.p.) 30 min before restraint stress, the d-AMPH-induced enhancement on locomotor activity and DA neurotransmission was prevented in all studied brain areas at both times. These findings show that a glutamate–dopamine link is underlying the short- and long- term d-AMPH-induced enhancement on DA and locomotor activity following stress. The persistent glutamate-dependent DA enhancement in NAcc core highlights the relevance of this region in the long-term proactive effects of stress on vulnerability to drug abuse . The stimulant effect of d-AMPH on DA overflow was enhanced in all nuclei at 24 h after a single stress, while at 8 days the enhanced responsiveness was maintained only in the NAcc core. When the rats were administered with MK-801 (0.1 mg/kg i.p.) 30 min before restraint stress, the d-AMPH-induced enhancement on locomotor activity and DA neurotransmission was prevented in all studied brain areas at both times. These findings show that a glutamate–dopamine link is underlying the short- and long- term d-AMPH-induced enhancement on DA and locomotor activity following stress. The persistent glutamate-dependent DA enhancement in NAcc core highlights the relevance of this region in the long-term proactive effects of stress on vulnerability to drug abuse