INVESTIGADORES
MIRALLES Daniel Julio
artículos
Título:
Yield components and yield stability in two and six rowed barley grown in contrasting nitrogen environments
Autor/es:
SEBASTIAN ARISNABARRETA; DANIEL JULIO MIRALLES
Revista:
Journal of Agronomy and Crop Science
Editorial:
Blackwell Verlag,
Referencias:
Lugar: Berlin; Año: 2006 vol. 192 p. 178 - 185
ISSN:
0931-2250
Resumen:
Two- and six-rowed barley with different intrinsic ability to produce tillers and kernels per ear, would differ in responsiveness to nitrogen availability with environmental improvements. Two field experiments were carried out to elucidate how nitrogen supply (N40 and N150) affects yield and its components in two- and six-rowed barley. High nitrogen increased aboveground dry matter at anthesis, by improving cumulative solar radiation intercepted by the crop, determining an increased dry-matter production at maturity without changes in harvest index. In both barley types, variations in grain yield were explained by changes in kernels per unit land area rather than by differences in the average kernel weight. However, changes in the number of kernels were due to variations in the number of ears per m2 in two-rowed barley and the number of kernels per ear in six-rowed barley. Ears per unit area showed a greater responsiveness in two- than in six-rowed barley due to a higher nitrogen supply treatment, associated with their intrinsic higher tillering capacity, while the number of kernels per ear was more responsive in six- than in tworowed types. The fact that responses to nitrogen by the number of kernels per unit land area in two- and six-rowed barley is better explained by different yield sub-components, allows the speculation that the critical period for yield determination would differ between barley types.40 and N150) affects yield and its components in two- and six-rowed barley. High nitrogen increased aboveground dry matter at anthesis, by improving cumulative solar radiation intercepted by the crop, determining an increased dry-matter production at maturity without changes in harvest index. In both barley types, variations in grain yield were explained by changes in kernels per unit land area rather than by differences in the average kernel weight. However, changes in the number of kernels were due to variations in the number of ears per m2 in two-rowed barley and the number of kernels per ear in six-rowed barley. Ears per unit area showed a greater responsiveness in two- than in six-rowed barley due to a higher nitrogen supply treatment, associated with their intrinsic higher tillering capacity, while the number of kernels per ear was more responsive in six- than in tworowed types. The fact that responses to nitrogen by the number of kernels per unit land area in two- and six-rowed barley is better explained by different yield sub-components, allows the speculation that the critical period for yield determination would differ between barley types.2 in two-rowed barley and the number of kernels per ear in six-rowed barley. Ears per unit area showed a greater responsiveness in two- than in six-rowed barley due to a higher nitrogen supply treatment, associated with their intrinsic higher tillering capacity, while the number of kernels per ear was more responsive in six- than in tworowed types. The fact that responses to nitrogen by the number of kernels per unit land area in two- and six-rowed barley is better explained by different yield sub-components, allows the speculation that the critical period for yield determination would differ between barley types. Key words: nitrogen fertilization — two- and sixrowed barley — yield components — yield stabilitynitrogen fertilization — two- and sixrowed barley — yield components — yield stability