INVESTIGADORES
ROCHA VIEGAS Luciana
artículos
Título:
RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes
Autor/es:
MARÍA SOL RECOUVREUX; ESTEBAN NICOLÁS GRASSO; PABLO CHRISTIAN ECHEVERRIA; LUCIANA ROCHA VIEGAS; LUCIO HERNÁN CASTILLA; CAROLINA SCHERE-LEVY; JOHANNA MELISA TOCCI; EDITH CLAUDIA KORDON; NATALIA RUBINSTEIN
Revista:
ONCOTARGET
Editorial:
Impact Journals
Referencias:
Año: 2016 vol. 7 p. 6552 - 6565
Resumen:
Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability.