INVESTIGADORES
VIOLI Ianina Lucila
congresos y reuniones científicas
Título:
Photothermal Response of Supported Single Gold Nanospheres: An in-situ Characterization
Autor/es:
MARIANO BARELLA; IANINA L. VIOLI; GARGIULO, JULIAN; MARTÍNEZ, LUCIANA ; GOSCHIN, FLORIAN; GUGLIELMOTTI, VICTORIA; PALLAROLA, DIEGO; PILO-PAIS, MAURICIO; ACUNA, GUILLERMO; SCHLÜCKER, SEBASTIAN; MAIER, STEFAN A.; FERNANDO STEFANI
Lugar:
online event
Reunión:
Jornada; Photonic Online meetup (POM2020ju); 2020
Resumen:
Accurate determination of temperature in processes involved at the nanoscale is a challenging task. The study of thermal transport in applications such as plasmon-assisted catalysis [1], optical traps [2] or thermal management in electronic nanodevices [3] motivates the development of a reliable, robust and simple method to estimate the temperature of nanostructures.In recent years, several authors have addressed this problem using different strategies. Some of them use the temperature dependence of environmental variables such as dielectric functions and refractive index to carry out simulations and fit the scattering spectra of gold nanospheres [4]. Other techniques involve fitting the photoluminescence emission of gold nanorods at different temperatures using the surface plasmon resonance of the nanostructure [5,6]. Despite these efforts, the previous methods assume prior knowledge of optical, geometric and thermodynamic characteristics of the medium and the nanostructure itself.In the present work we will focus on the determination of the temperature of gold nanospheres. We introduce a method based on the detection of photoluminescence spectrum and the relationship of its Anti-Stokes component with the temperature. After obtaining a photoluminescence spectral map, we study the photothermal coefficient of different nanoparticles immobilized by optical printing [7] onto different substrates.[1] E. Pensa, J. Gargiulo, A. Lauri, S. Schlücker, E. Cortés, S. A. Maier, Nano Lett. 19(3) (2019) pp. 1867-1874[2] S. Jones, D. Andrén, P. Karpinski, M. Käll, ACS Phot. 5 (7) (2018) pp. 2878-2887[3] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, L. Shi, App. Phys. Rev. 1 (2014) pp. 011305 1-45[4] K. Setoura, Y. Okada, D. Werner, S. Hashimoto, ACS Nano 7 (9) (2013) pp. 7874-7887[5] X. Xie, D. G. Cahill, App. Phys. Lett. 109 (2016) pp. 183104 1-4[6] A. Carattino, M. Caldarola, M. Orrit, Nano Lett. 18 (2) (2017) pp. 874-880[7] J. Gargiulo, I. L. Violi, S. Cerrota, L. Chvátal, E. Cortés, E. M. Parassi, F. Diaz, P. Zemánek, F. D. Stefani, ACS Nano 11 (10) (2017) pp. 9678-9688