INVESTIGADORES
CITTERIO Cintia Eliana
artículos
Título:
Relationship Between the Dimerization of Thyroglobulin and its Ability to Form Triiodothyronine
Autor/es:
CINTIA E. CITTERIO; YOSHIAKI MORISHITA; NADA DAKKA; BALAJI VELUSWAMY; PETER ARVAN
Revista:
JOURNAL OF BIOLOGICAL CHEMISTRY (ONLINE)
Editorial:
American Society of Biochemistry and Molecular Biology, Inc.
Referencias:
Año: 2018 vol. 293 p. 4860 - 4869
ISSN:
1083-351X
Resumen:
Thyroglobulin (TG) is the most abundant thyroid gland protein ,a dimeric iodoglycoprotein (660 kDa). TG serves as the protein precursor in the synthesis of thyroid hormones tetraiodothyronine(T4) and triiodothyronine (T3). The primary site forT3 synthesis in TG involves an iodotyrosine acceptor at the antepenultimate Tyr residue (at the extreme carboxyl terminus of the protein). The carboxyl-terminal region of TG comprises acholinesterase-like (ChEL) domain followed by a short unique tail sequence. Despite many studies, the monoiodotyrosine donor residue needed for the coupling reaction to create T3 at this evolutionarily conserved site remains unidentified. In this report, we have utilized a novel, convenient immunoblotting assay to detect T3 formation after protein iodination in vitro, enabling the study of T3 formation in recombinant TG secreted from thyrocytes or heterologous cells. With this assay, we confirm the antepenultimate residue of TG as a major T3-formingsite, but also demonstrate that the side chain of this residue intimately interacts with the same residue in the apposed monomer of the TG dimer. T3 formation in TG, or the isolatedcarboxyl-terminal region, is inhibited by mutation of this antepenultimate residue, but we describe the first substitution mutation that actually increases T3 hormonogenesis by engineering a novel cysteine, 10 residues upstream of the antepenultimate residue, allowing for covalent association of the unique tail sequences, and that helps to bring residues Tyr2744 from apposed monomers into closer proximity.