UE-INN   27105
UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA
Unidad Ejecutora - UE
congresos y reuniones científicas
Título:
Fundamentals and catalytic applications of CeO 2 -based materials
Autor/es:
G. E. MURGIDA; Y. GAO; P. G. LUSTEMBERG; D. ZHANG; A. M. LLOIS; M. VERÓNICA GANDUGLIA PIROVANO; Z.-K. HAN; V. FERRARI
Lugar:
Montevideo
Reunión:
Congreso; Sólidos 2019, Primer encuentro Binacional; 2019
Resumen:
Ceria (CeO 2 ) is the most significant of the oxides of rare-earth metals in industrial catalysis. Deepunderstanding of the oxygen defect structure of ceria surfaces under reducing conditions isessential to tailor their functionality in catalytic applications. For the CeO 2 (111) surface, whetheroxygen vacancies prefer the subsurface or the surface, and if surface oxygen vacancies attractor repel, as well as whether oxygen vacancy migration and polaron (Ce 3+ ) hopping are entangled,are still heavily debated. Also, a number of ordered phases have been observed upon reductionbut their structures have remained elusive. Here, supported by experimental and theoreticalresults, the current understanding of the structure of the CeO 2-x (111) surface will be discussed[1-8]. Furthermore, the function of ceria as support in the catalytic activity of metal-ceriasystems is not fully understood. Its non-innocent role will be here discussed using ceria-supported metal nanoparticles as model catalysts. Co- and Ni-ceria systems will be used asexamples of catalysts for methane dry reforming with CO 2 to produce syngas, a relevant processfrom the environmental standpoint [9-11]. Ni-ceria will also be considered for the production oftwo energy vectors, namely, hydrogen [12, 13] and methanol [14], via the water-gas shiftreaction and the direct oxidation of methane in the presence of water, respectively.The collaboration with the experimental groups led by Michael Reichling (Uni. Osnabrück), andJose A. Rodriguez and Sanja Senanayake (BNL) is deeply acknowledged.[1] Ganduglia-Pirovano, M. V.; Da Silva, J. L. F.; Sauer, J. Phys. Rev. Lett. 2009, 102, 026101.DOI: 10.1103/PhysRevLett.102.026101[2] Jerratsch, J. F. et al. Phys. Rev. Lett. 2011, 106, 246801. DOI: 10.1103/PhysRevLett.106.246801[3] Murgida G. E.; Ganduglia-Pirovano, M. V. Phys. Rev. Lett. 2013, 110, 246101.DOI: 10.1103/PhysRevLett.110.246101[4] Murgida, G. E.; Ferrari, V.; Llois, A. M.; Ganduglia-Pirovano, M. V. Phys. Rev. B 2014, 90, 115120.DOI: 10.1103/PhysRevB.90.115120[5] Olbrich, R. et al. J. Phys. Chem. C 2017, 121, 6844. DOI: 10.1021/acs.jpcc.7b00956[6] Murgida, G. E.; Ferrari, V.; Llois, A. M.; Ganduglia-Pirovano, M. V. Phys. Rev. Materials 2018, 2, 083609.DOI: 10.1103/PhysRevMaterials.2.083609[7] Han, Z.-K. et al. Phys. Rev. Materials 2018, 2, 035802. DOI: 10.1103/PhysRevMaterials.2.035802[8] Zhang, D. et al. Phys. Rev. Lett. 2019, 122, 096101. DOI: 10.1103/PhysRevLett.122.096101[9] Liu, Z. et al. Angew. Chem., Int. Ed. 2016, 55, 7455. DOI: 10.1002/anie.201602489[10] Lustemberg, P. G. et al. ACS Catal. 2016, 6, 8184. DOI: 10.1021/acscatal.6b02360[11] Liu, Z. et al. Angew. Chem. Int. Ed. 2017, 56, 13041. DOI: 10.1002/anie.201707538[12] Carrasco, J. et al. Angew. Chem. Int. Ed. 2015, 54, 3917. DOI: 10.1002/anie.201410697[13] Lustemberg, P. G.; Feria, L.; Ganduglia-Pirovano, M. V. J. Phys. Chem. C 2019, 123, 7749.DOI: 10.1021/acs.jpcc.8b06231[14] Lustemberg, P. G. et al. J. Am. Chem. Soc. 2018, 140, 7681. DOI: 10.1021/jacs.8b03809