UE-INN   27105
UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA
Unidad Ejecutora - UE
artículos
Título:
Revealing the system-bath coupling via Landau-Zener-Stückelberg interferometry in superconducting qubits
Autor/es:
DOMÍNGUEZ, DANIEL; GRAMAJO, ANA LAURA; SÁNCHEZ, MARÍA JOSÉ
Revista:
Physical Review B
Editorial:
American Physical Society
Referencias:
Año: 2019 vol. 100
ISSN:
2469-9950
Resumen:
In this work we propose a way to unveil the type of environmental noise in strongly driven superconducting flux qubits through the analysis of the Landau-Zener-Stückelberg (LZS) interferometry. We study both the two-level and multilevel dynamics of the flux qubit driven by a dc+ac magnetic field. We find that the LZS interference patterns exhibit well-defined multiphoton resonances whose shape strongly depends on the timescale and the type of coupling to a quantum bath. For the case of transverse system-bath coupling, the n-photon resonances are narrow and nearly symmetric with respect to the dc magnetic field for almost all timescales, while in the case of longitudinal coupling they exhibit a change from a wide symmetric to an antisymmetric shape for times of the order of the relaxation time. We find this dynamic behavior relevant for the interpretation of several LZS interferometry experiments in which the stationary regime is not completely reached.