INVESTIGADORES
MACHADO Sebastian Pablo
artículos
Título:
Energy harvesting using lead-free multilayer piezo stacks based on 0.95(Bi0.5Na0.5)TiO3-0.05(BaTiO3) piezoceramics through the addition of ZrO2
Autor/es:
OSINAGA SANTIAGO; DIFEO, MAURO; FEBBO, MARIANO; MIRIAM CASTRO; LEANDRO A. RAMAJO; MACHADO SEBASTIÁN PABLO
Revista:
CERAMICS INTERNATIONAL
Editorial:
ELSEVIER SCI LTD
Referencias:
Lugar: Amsterdam; Año: 2024
ISSN:
0272-8842
Resumen:
This paper explores the feasibility of utilizing lead-free multilayer piezo stacks, particularly focusing on Zr-doped 0.95(Bi0.5Na0.5)TiO3-0.05(BaTiO3) piezoceramics, for energy harvesting. Various lead-free BNT-BT disk samples with different Zr concentrations undergo structural, microstructural, and electrical characterizations. The results illustrate that Zr-doping improves piezoelectric constitutive parameters, notably at a 2.0 mol% concentration. Electromechanical tests were conducted on multilayer piezo stacks, involving variations in electric load, mechanical load, frequency, and number of stacked disks. These tests demonstrate the ability of the multilayer transducer to produce up to 1.5 V (peak) under particular conditions: a 250 Hz frequency, a 10 N mechanical load, and an open circuit electric load, utilizing a stack comprising 5 disks. Employing an analytical mathematical model, an effective of the system is determined, yielding values ranging from 588 to 625 pC/N for a stack composed of 5 disks. These findings highlight the considerable potential of lead-free multilayer piezo stacks in energy harvesting applications, offering crucial insights for the development of sustainable and eco-friendly energy solutions.