INVESTIGADORES
FOUGA Gaston Galo
capítulos de libros
Título:
Gasification Studies on Argentine Solid Fuels
Autor/es:
FOUGA G. G.; DE MICCO G.; NASSINI H.; BOHÉ A. E
Libro:
Gasification for Practical Aplications
Editorial:
InTech
Referencias:
Lugar: Rijeka; Año: 2012; p. 30 - 50
Resumen:
As the global population growth and energy demand are steadily raising and the industry is forced to reduce the greenhouse gas emissions due to the global warming, there is an increasing pressure to improve the overall efficiency of the energy production systems. In this challenging framework, a renewed interest on coal gasification technologies has recently emerged worldwide, since they offer the potential of clean and efficient energy. One attractive characteristic of coal gasification technology is the possibility of co-production of electricity, hydrogen, liquid fuels and high-value chemicals that contributes to the improvement of power generation efficiency compared with conventional pulverised coal fired plants as well as the reduction of emissions of greenhouses gases and particulates to the atmosphere (Minchener, 2005). Gasification has also the additional advantage of accommodating a wide range of feed stocks, including low-cost fuels like petroleum coke, biomass, and municipal wastes (Higman & Van der Burgt, 2003).    As it will be explained in Section 2, Argentina is presently investigating the application of the concept of co-production for the integral exploitation of its coal reserves. Co-production of power, fuels and chemicals offers an innovative, economically advantageous mean of achieving the long-term energy goals of our country since it  involves the integration in a single energy complex of three major building blocks: (1) gasification of coal to produce synthesis gas; (2) conversion of a portion of the synthesis gas to high-value products, such as high-purity hydrogen and liquid fuels; and (3) combustion of the remaining synthesis gas and unreacted gas from the conversion processes to produce electric power in a combined-cycle system. In the co-production concept, an energy complex produces not only power, but also fuels and/or chemicals. This concept greatly increases the flexibility of the complex and offers economic advantages compared with separate plants, one producing only power and the other only fuels or chemicals.    Following this objective, an extensive research and development program is being implemented in our country on solid fuel gasification technologies, beginning with both theoretical and experimental studies for understanding the mechanisms of the gasification reactions, in order to determine the optimum parameter condition for the synthesis gas production and the further cleanup steps for the harmful contaminants removal. For providing indirect heating to the gasification reactors, replacing the partial combustion of the feed material that is needed to drive the endothermic gasification reactions, the alternative of using a nuclear high temperature gas reactor is being also evaluated (Nassini et al., 2011).     It is well-known that the chemical composition, the heating value and, then, the future use of the synthesis gas produced by solid fuel gasification is variable with the gasification technology employed, depending on a lot of factors such as solid fuel composition and rank; pre-processing and feeding procedures; gasification agents; operational conditions in the gasification reactor, i.e. temperature, pressure, heating rate, and residence time; and plant configuration characteristics like the flow geometry, ash removal method and gas cleaning system. There is a large number of gasification processes implemented at commercial level and the choice of a given gasification technology is difficult because it depends on diverse factors such as solid fuel availability, type and cost; size constraints; and production rate of energy. Even, in principle, all types of solid fuels can be gasified, the properties of the material to be processed are the least flexible factor to be considered in the analysis and, then, the gasification technology should be primarily matched to the properties of the solid fuels available for gasification (Collot, 2006).    According to that, a theoretical and experimental study is being now performed at laboratory scale, addressed to characterize the behaviour of Argentine solid fuels under typical gasification conditions and to identify the most suitable gasification process for the production of hydrogen and liquid fuels, respectively. The research program that is described below was designed to simulate in laboratory, as close as possible, the operational conditions of large-scale gasification plants and to provide the necessary information about fundamental mechanisms and kinetics of the gasification reactions for a further scaling up of experimental facilities.