INVESTIGADORES
GIL Diego Mauricio
artículos
Título:
Supramolecular Assemblies in Pyridine- and Pyrazole-Based Coordination Compounds of Co(II) and Ni(II): Characterization, Hirshfeld Analysis and Theoretical Studies
Autor/es:
BAISHYA, TRISHNAJYOTI; GOMILA, ROSA M.; BARCELO-OLIVER, MIQUEL; GIL, DIEGO M.; BHATTACHARYYA, MANJIT K.; FRONTERA, ANTONIO
Revista:
Crystals
Editorial:
MDPI
Referencias:
Año: 2023 vol. 13
Resumen:
Two new Ni(II) and Co(II) coordination compounds, viz., [Ni(H2O)5(DMAP)](IPhth)·2H2O (1) and [Co(Hdmpz)4(H2O)2]Cl2 (2) (where DMAP = 4-dimethylaminopyridine, IPhth = Isophthalate, Hdmpz = 3,5-dimethylpyrazole),were synthesized and characterized using elemental analysis, TGA, spectroscopic (FTIR and electronic) and single-crystal X-ray diffraction techniques. Compound 1 crystallizes as a co-crystal hydrate of Ni(II), whereas compound 2 is a mononuclear compound of Co(II). The crystal structure analysis of compound 1 reveals the presence of various non-covalent interactions such as anion–π, π–π, C–H∙∙∙π, C–H∙∙∙C, etc., which stabilize the layered assembly of the compound. In compound 2, enclathration of counter chloride ions within the supramolecular trimeric host cavity plays a crucial role in the stabilization of the compound. The non-covalent interactions observed in the crystal structures were further studied theoretically, focusing on the cooperative π-stacking interactions between the DMAP and IPhth counter-ions in 1. To identify the non-covalent interactions of the compounds, Hirshfeld surfaces and their associated two-dimensional fingerprint regions were analyzed. Theoretical calculations confirm that H-bonding interactions combined with the π-stacking contacts are crucial synthons for the solid-state stability of compound 1.