INVESTIGADORES
PENOFF Marcela Elisabeth
artículos
Título:
Chemical and morphological surface modification of epoxy based thermosets
Autor/es:
M.E. PENOFF; W. SCHREINER; P. A. OYANGUREN; P. E. MONTEMARTINI
Revista:
Materials Sciences and Applications
Editorial:
Scientific Research Open Access
Referencias:
Año: 2013 vol. 4 p. 1 - 9
ISSN:
2153-1188
Resumen:
Recently developed low fluorine containing polymers are advanced materials which confer advantageous properties to surfaces at a lower cost than conventional fluoropolymers (like PTFE), and are also more easily processable. Fluoropolymer surfaces are characterized by a low surface energy, high oleo and hydrophobicity, low coefficients of friction, among many other properties. This makes them desired materials in microelectronics, antifogging, antifouling and medical applications, to name a few. Fluorinated compounds are not easily coupled with macromolecules or com-mon organic systems, and great efforts are made to compatibilize fluorinated species with hydrocarbon polymers. In this work, two chemical routes were explored in order to incorporate perfluorinated alkyl chains in an epoxy ? amine based thermoset. On one side, a perfluoroalkyl thiolated molecule was used as a stabilizing ligand for silver nanoparti-cles, which were incorporated in the matrix polymer. On the other hand, fluorinated chains containing epoxy function-alities, were used as the matrix modifier. In the first case, fluorinated chains covering the nanoparticles, were mixed with the matrix, while in the second case, the fluoroalkyl chains were chemically linked to the network. Fluorine migration to the air ? polymer interface was confirmed by X-Ray photoelectron spectroscopy (XPS). The ma-terials hydrophobicity was then studied in terms of their contact angle with water (CA), as a function of the surface composition and the topography. Scanning electron microscopy (SEM) and atomic force microscopy (AFM), operated in moderate and light tapping modes, were used to morphologically describe the surfaces. An exhaustive surface analy-sis was made in order to explain the different hydrophobicity grades found.