IFIBA   22255
INSTITUTO DE FISICA DE BUENOS AIRES
Unidad Ejecutora - UE
congresos y reuniones científicas
Título:
First airborne gravity wave observations at the world?s hotspot in Southern Argentina
Autor/es:
B. KAIFLER; A. DE LA TORRE; M. RAPP; S. GISINGER; A. DOERNBRACK; P. ALEXANDER
Reunión:
Congreso; EGU General Assembly; 2020
Resumen:
The region around Southern Argentina and the Antarctic peninsula is known as the world´s strongest hotspot of stratospheric gravity wave activity. In this region, large tropospheric winds are perturbed by the orography of the Andes and the Antarctic peninsula resulting in the excitation of mountain waves which might propagate all the way up into the upper mesosphere when the polar night jet is intact. In addition, satellite observations also show large stratospheric wave activity in the region of the Drake passage, i.e., in between the Andes and the Antarctic peninsula, and along the corresponding latitudinal circle of 60°S. The origin of these waves is currently not entirely understood. Several hypotheses are currently being investigated, like for example the idea that the mountain waves that were originally excited over the Andes and the Antarctic peninsula propagate horizontally to 60°S and along the latitudinal circle. In order to investigate this and other hypotheses the German research aircraft HALO was deployed to Rio Grande, Tierra del Fuego, at the Southern Tip of Argentina in September and November 2019 in the frame of the SOUTHTRAC (Southern hemisphere Transport, Dynamics, and Chemistry) research mission. A total of 6 dedicated research flights with a typical length of 7000km were conducted to obtain gravity wave observations with the newly developed ALIMA (ALIMA=Airborne LIdar for Middle Atmosphere research)-instrument and the GLORIA (GLORIA=Gimballed Limb Observer for Radiance Imaging of the Atmosphere) limb sounder. While ALIMA measures temperatures and temperature perturbations in the altitude range from 20-90 km, GLORIA observations allow to characterize wave perturbations in temperatures and trace gas concentrations below flight level (<~14 km). This paper gives an overview of the mission objectives, the prevailing atmospheric conditions during the HALO deployment, and highlights some outstanding initial results of the gravity wave observations.